20% off purchase of 3 or more products* | Learn More >>

Polyclonal Antibody Western Blotting Ubiquitin Binding

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes (UBEs) and deubiquitinating enzymes (DUBs) (1,2). DUBs are categorized into 5 subfamilies: USP, UCH, OTU, MJD, and JAMM. UCHL1, UCHL3, UCHL5/UCH37, and BRCA-1-associated protein-1 (BAP1) belong to the UCH family of DUBs, which all posses a conserved catalytic domain (UCH domain) of about 230 amino acids. UCHL5 and BAP1 have unique extended C-terminal tails. UCHL1 is abundantly expressed in neuronal tissues and testes, while UCHL3 expression is more widely distributed (3,4). Although UCHL1 and UCHL3 are the most closely related UCH family members with about 53% identity, their biochemical properties differ in that UCHL1 binds monoubiquitin and UCHL3 shows dual specificity toward both ubiquitin (Ub) and NEDD8, a Ub-like molecule. In particular, UCHL3 functions as a Ub hydrolase involved in the processing of both Ub precursors and ubiquitinated substrates, generating free monomeric Ub. This is accomplished through the ability of UCHL3 to recognize and hydrolyze isopeptide bonds at the C-terminal glycine of either Ub or NEDD8 (5-7). Recent functional studies have identified UCH-L3 as a critical regulator of adipogenesis through its ability to promote IGF-IR and insulin receptor signaling (8). Furthermore, UCHL3 has been shown to promote deubiquitination, recycling, and cell surface expression of the epithelial sodium channel (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein ubiquitination is an important posttranslational modification that regulates protein function and fate (1). Ubiquitin (Ub) can be conjugated to target proteins in either monomeric or polymeric forms. There are several different lysine residues within Ub that can be used as conjugation sites for poly-Ub chain formation. Different poly-Ub linkages mediate different functions of the target protein ranging from alterations in protein function to degradation (2). UBE2N/Ubc13 is a ubiquitin-E2-conjugating enzyme that catalyzes K63-linked poly-Ub chain formation (1,2). UBE2N forms a heterodimer with MMS2 or Uev1A to exert its E2 ligase function. The UBE2N/MMS2 and UBE2N/Uev1A heterodimers catalyze different modes of target protein ubiquitination to mediate various signaling pathways (3-5) including: DNA damage and recombination, p53 and check point control, the cell cycle (6-10), immunoreceptor signaling (11,12), and endocytosis (13). Most recently, UBE2N was shown to play an important role in inflammatory signaling by promoting K63-linked ubiquitination and activation of IKK downstream of the IL-1β receptor (14). Furthermore, interaction of UBE2N with the Triad1 E3 protein-ubiquitin ligase was shown to play an important role in myelopoiesis (15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Neural precursor expressed, developmentally down-regulated protein 4 (NEDD4) was originally identified as a gene that is highly expressed in the early mouse embryonic central nervous system (1). Subsequently, a family of NEDD4-like proteins have been defined that includes seven members in humans (2). NEDD4 and NEDD4-like (NEDD4L) proteins contain multiple functional domains including a calcium-dependent phospholipid and membrane binding domain (C2 domain), two to four protein binding domains (WW domains), and an E3 ubiquitin-protein ligase domain (HECT domain). NEDD4 and NEDD4L have been shown to downregulate both neuronal voltage-gated Na+ channels (NaVs) and epithelial Na+ channels (ENaCs) in response to increased intracellular Na+ concentrations (3,4). The WW domains of NEDD4 bind to PY motifs (amino acid sequence PPXY) found in multiple NaV and ENaC proteins; ubiquitination of these proteins is mediated by the HECT domain of NEDD4 and results in their internalization and removal from the plasma membrane. Research studies have shown that mutation of the PY motifs in ENaC proteins is associated with Liddle's syndrome, an autosomal dominant form of hypertension (5). In addition to targeting sodium channels, NEDD4L has also been shown to negatively regulate TGF-β signaling by targeting Smad2 for degradation (6). Mouse and human NEDD4 are rapidly cleaved by caspase proteins during apoptosis, although the significance of this cleavage is not clear (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes (UBEs) and deubiquitinating enzymes (DUBs) (1,2). DUBs are categorized into 5 subfamilies: USP, UCH, OTU, MJD, and JAMM. UCHL1, UCHL3, UCHL5/UCH37, and BRCA-1-associated protein-1 (BAP1) belong to the UCH family of DUBs, which all posses a conserved catalytic domain (UCH domain) of about 230 amino acids. UCHL5 and BAP1 have unique extended C-terminal tails. UCHL1 is abundantly expressed in neuronal tissues and testes, while UCHL3 expression is more widely distributed (3,4). Although UCHL1 and UCHL3 are the most closely related UCH family members with about 53% identity, their biochemical properties differ in that UCHL1 binds monoubiquitin and UCHL3 shows dual specificity toward both ubiquitin (Ub) and NEDD8, a Ub-like molecule. In particular, UCHL3 functions as a Ub hydrolase involved in the processing of both Ub precursors and ubiquitinated substrates, generating free monomeric Ub. This is accomplished through the ability of UCHL3 to recognize and hydrolyze isopeptide bonds at the C-terminal glycine of either Ub or NEDD8 (5-7). Recent functional studies have identified UCH-L3 as a critical regulator of adipogenesis through its ability to promote IGF-IR and insulin receptor signaling (8). Furthermore, UCHL3 has been shown to promote deubiquitination, recycling, and cell surface expression of the epithelial sodium channel (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Nuclear protein localization protein 4 (NPL4, NPLOC4) was originally identified as a yeast nuclear transport protein that was later recognized as a critical component of the endoplasmic reticulum-associated degradation (ERAD) pathway (1,2). Mammalian NPL4 protein has an amino-terminal ubiquitin-like domain containing a p97 binding site, and a conserved carboxy-terminal zinc finger (NZF) motif responsible for binding ubiquitinated target proteins (2,3). NPL4 binds ubiquitin fusion degradation protein 1 (UFD1) to form a heterodimer that associates with the p97 AAA-ATPase, creating a protein complex that mediates delivery of ubiquitinated ER proteins to the proteasome (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: A20, also referred to as TNF-α-induced protein 3 (TNFAIP3), is cytokine-inducible protein that functions to inhibit apoptosis and activate NF-κB (1,2). It was first identified as a TNF-α inducible primary response gene in human umbilical vein endothelial cells, and encodes a 790-amino acid protein containing seven Cys2/Cys2-zinc finger motifs (3). Constitutive expression of A20 is observed in lymphoid tissues (4), but it is transiently expressed in a variety of cell types in response to inflammatory signals such as TNF-α (3,5), IL-1 (3,5), phorbol esters (6), and LPS (7). Expression of A20 can confer resistance to apoptosis and NF-κB activation triggered by these signals, probably through interference with TRAF (TNF receptor associated factor) family members (8,9), and interaction with the NF-κB inhibiting protein ABIN (10). Studies also show that A20 contains site-specific ubiquitin modifying activity that can contribute to its biological functions (11,12). The amino-terminus of A20 contains de-ubiquitinating (DUB) activity for Lys63 branches, such as those found in TRAF6 and RIP, while the carboxyl-terminus contains ubiquitin ligase (E3) activity for Lys48 branches of the same substrates and leads to their degradation (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Parkin is a protein of 465 amino acids with an amino-terminal ubiquitin domain and a carboxy-terminal RING-box (1). In the case of autosomal recessive juvenile Parkinsonism (AR-JP), deletions have been found in the gene on chromosome 6 encoding the protein Parkin (2).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Sequestosome 1 (SQSTM1, p62) is a ubiquitin binding protein involved in cell signaling, oxidative stress, and autophagy (1-4). It was first identified as a protein that binds to the SH2 domain of p56Lck (5) and independently found to interact with PKCζ (6,7). SQSTM1 was subsequently found to interact with ubiquitin, providing a scaffold for several signaling proteins and triggering degradation of proteins through the proteasome or lysosome (8). Interaction between SQSTM1 and TRAF6 leads to the K63-linked polyubiquitination of TRAF6 and subsequent activation of the NF-κB pathway (9). Protein aggregates formed by SQSTM1 can be degraded by the autophagosome (4,10,11). SQSTM1 binds autophagosomal membrane protein LC3/Atg8, bringing SQSTM1-containing protein aggregates to the autophagosome (12). Lysosomal degradation of autophagosomes leads to a decrease in SQSTM1 levels during autophagy; conversely, autophagy inhibitors stabilize SQSTM1 levels. Studies have demonstrated a link between SQSTM1 and oxidative stress. SQSTM1 interacts with KEAP1, which is a cytoplasmic inhibitor of NRF2, a key transcription factor involved in cellular responses to oxidative stress (3). Thus, accumulation of SQSTM1 can lead to an increase in NRF2 activity.

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Sequestosome 1 (SQSTM1, p62) is a ubiquitin binding protein involved in cell signaling, oxidative stress, and autophagy (1-4). It was first identified as a protein that binds to the SH2 domain of p56Lck (5) and independently found to interact with PKCζ (6,7). SQSTM1 was subsequently found to interact with ubiquitin, providing a scaffold for several signaling proteins and triggering degradation of proteins through the proteasome or lysosome (8). Interaction between SQSTM1 and TRAF6 leads to the K63-linked polyubiquitination of TRAF6 and subsequent activation of the NF-κB pathway (9). Protein aggregates formed by SQSTM1 can be degraded by the autophagosome (4,10,11). SQSTM1 binds autophagosomal membrane protein LC3/Atg8, bringing SQSTM1-containing protein aggregates to the autophagosome (12). Lysosomal degradation of autophagosomes leads to a decrease in SQSTM1 levels during autophagy; conversely, autophagy inhibitors stabilize SQSTM1 levels. Studies have demonstrated a link between SQSTM1 and oxidative stress. SQSTM1 interacts with KEAP1, which is a cytoplasmic inhibitor of NRF2, a key transcription factor involved in cellular responses to oxidative stress (3). Thus, accumulation of SQSTM1 can lead to an increase in NRF2 activity.

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: A20, also referred to as TNF-α-induced protein 3 (TNFAIP3), is cytokine-inducible protein that functions to inhibit apoptosis and activate NF-κB (1,2). It was first identified as a TNF-α inducible primary response gene in human umbilical vein endothelial cells, and encodes a 790-amino acid protein containing seven Cys2/Cys2-zinc finger motifs (3). Constitutive expression of A20 is observed in lymphoid tissues (4), but it is transiently expressed in a variety of cell types in response to inflammatory signals such as TNF-α (3,5), IL-1 (3,5), phorbol esters (6), and LPS (7). Expression of A20 can confer resistance to apoptosis and NF-κB activation triggered by these signals, probably through interference with TRAF (TNF receptor associated factor) family members (8,9), and interaction with the NF-κB inhibiting protein ABIN (10). Studies also show that A20 contains site-specific ubiquitin modifying activity that can contribute to its biological functions (11,12). The amino-terminus of A20 contains de-ubiquitinating (DUB) activity for Lys63 branches, such as those found in TRAF6 and RIP, while the carboxyl-terminus contains ubiquitin ligase (E3) activity for Lys48 branches of the same substrates and leads to their degradation (12).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CXCR4 is a chemokine receptor that belongs to the G protein-coupled receptor family. It is activated by a small cytokine, CXCL12, also known as stromal cell derived factor 1 (SDF-1) (1). The main function of CXCR4 is the mediation of the homing of progenitor cells in the bone marrow and their recruitment to sites of injury (2). More recently, CXCR4 has been studied, as a potential therapeutic target, in the context of autoimmune diseases (3) as well as cancer, as the receptor is involved in the regulation of migration, proliferation, and survival of cancer cells (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Sequestosome 1 (SQSTM1, p62) is a ubiquitin binding protein involved in cell signaling, oxidative stress, and autophagy (1-4). It was first identified as a protein that binds to the SH2 domain of p56Lck (5) and independently found to interact with PKCζ (6,7). SQSTM1 was subsequently found to interact with ubiquitin, providing a scaffold for several signaling proteins and triggering degradation of proteins through the proteasome or lysosome (8). Interaction between SQSTM1 and TRAF6 leads to the K63-linked polyubiquitination of TRAF6 and subsequent activation of the NF-κB pathway (9). Protein aggregates formed by SQSTM1 can be degraded by the autophagosome (4,10,11). SQSTM1 binds autophagosomal membrane protein LC3/Atg8, bringing SQSTM1-containing protein aggregates to the autophagosome (12). Lysosomal degradation of autophagosomes leads to a decrease in SQSTM1 levels during autophagy; conversely, autophagy inhibitors stabilize SQSTM1 levels. Studies have demonstrated a link between SQSTM1 and oxidative stress. SQSTM1 interacts with KEAP1, which is a cytoplasmic inhibitor of NRF2, a key transcription factor involved in cellular responses to oxidative stress (3). Thus, accumulation of SQSTM1 can lead to an increase in NRF2 activity.

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Western Blotting

Background: Heat shock protein (HSP) 27 is one of the small HSPs that are constitutively expressed at different levels in various cell types and tissues. Like other small HSPs, HSP27 is regulated at both the transcriptional and posttranslational levels (1). In response to stress, the HSP27 expression increases several-fold to confer cellular resistance to the adverse environmental change. HSP27 is phosphorylated at Ser15, Ser78, and Ser82 by MAPKAPK-2 as a result of the activation of the p38 MAP kinase pathway (2,3). Phosphorylation of HSP27 causes a change in its tertiary structure, which shifts from large homotypic multimers to dimers and monomers (4). It has been shown that phosphorylation and increased concentration of HSP27 modulates actin polymerization and reorganization (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Heat shock protein (HSP) 27 is one of the small HSPs that are constitutively expressed at different levels in various cell types and tissues. Like other small HSPs, HSP27 is regulated at both the transcriptional and posttranslational levels (1). In response to stress, the HSP27 expression increases several-fold to confer cellular resistance to the adverse environmental change. HSP27 is phosphorylated at Ser15, Ser78, and Ser82 by MAPKAPK-2 as a result of the activation of the p38 MAP kinase pathway (2,3). Phosphorylation of HSP27 causes a change in its tertiary structure, which shifts from large homotypic multimers to dimers and monomers (4). It has been shown that phosphorylation and increased concentration of HSP27 modulates actin polymerization and reorganization (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: FAF1 was originally identified though yeast two-hybrid screening, interacting with the cytoplasmic domain of Fas, a member of the TNF receptor superfamily that plays a critical role in in apoptosis during development and immune function (1). FAF1 is widely expressed with highest expression observed in testis, skeletal muscle and heart (2). FAF1 potentiates Fas-mediated apoptosis and may induce apoptosis without Fas stimulation in some cell types. It does not contain typical death motifs, but rather has two amino-terminal domains with structural homology to ubiquitin. While the precise role of FAF1 during apoptosis is still unclear, it has been observed to be one of the components of the death-inducing signaling complex (DISC) during Fas-mediated apoptosis and can bind to caspase-8 and FADD (3). FAF1 has also been shown to suppress the activation of the NF-kappaB transcription factor (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The DYRK family includes several dual-specificity tyrosine-phosphorylated and regulated kinases capable of phosphorylating proteins at both Tyr and Ser/Thr residues (1). The DYRK family was identified based on homology to the yeast Yak1 (2) and the Drosophila minibrain (mnb) kinases (3). Seven mammalian isoforms have been discovered, including DYRK1A, DYRK1B, DYRK1C, DYRK2, DYRK3, DYRK4, and DYRK4B. Differences in substrate specificity, expression, and subcellular localization are seen across the DYRK family (4,5). All DYRK proteins have a Tyr-X-Tyr motif in the catalytic domain activation loop; phosphorylation of the second Tyr residue (e.g. Tyr312 of DYRK1A) is necessary for kinase activity. DYRKs typically autophosphorylate the Tyr residue within their activation loop, but phosphorylate substrates at Ser and Thr residues (1,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CXCR4 is a chemokine receptor that belongs to the G protein-coupled receptor family. It is activated by a small cytokine, CXCL12, also known as stromal cell derived factor 1 (SDF-1) (1). The main function of CXCR4 is the mediation of the homing of progenitor cells in the bone marrow and their recruitment to sites of injury (2). More recently, CXCR4 has been studied, as a potential therapeutic target, in the context of autoimmune diseases (3) as well as cancer, as the receptor is involved in the regulation of migration, proliferation, and survival of cancer cells (4).