Microsize antibodies for $99 | Learn More >>

Rat Actin Rod Formation

Also showing Monkey Actin Rod Formation, Mouse Actin Rod Formation, Human Actin Rod Formation

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Cofilin is a conserved actin-severing protein required for processes that rely on actin dynamics, including cytokinesis and cell motility (reviewed in 1). Regulation of actin dynamics requires the controlled cycling between the phosphorylated and unphosphorylated forms of cofilin (2). The severing activity of cofilin is inhibited by LIMK or TESK phosphorylation at the conserved amino-terminal Ser3 of cofilin (3,4). Slingshot (SSH) phosphatase, for which there have been three mammalian isoforms identified, dephosphorylates cofilin in vivo (5). Chronophin (CIN, PDXP) is a haloacid dehalogenase phosphatase that also dephosphorylates cofilin. Alteration of CIN activity through overexpression of either the wildtype or phosphatase-inactive mutant CIN interferes with actin dynamics, cell morphology and cytokinesis (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Secretory proteins are synthesized on polysomes and translocated into the endoplasmic reticulum (ER). Inside ER, these proteins are often modified by disulfide bond formation, amino-linked glycosylation and folding. The ER contains a pool of molecular chaperones, including Grp94, to help ensure correct protein folding. Grp94 is a glucose-regulated protein (1) with sequence homology to Hsp90 (2). In addition to its role in helping to facilitate folding of a number of secretory proteins to their correct conformation (3), studies suggest that Grp94 derived from cancer cells also induces anti-tumor immune responses in mouse tumor models (4, 5). One way in which Grp94 promotes tumor immunogenicity is its ability to bind to and present tumor-derived peptides as antigens (6). Furthermore, Grp94 has also been shown to induce maturation of dendritic cells (7). Taken together, Grp94 functions both as a tumor-specific antigen and as an activator of antigen-presenting cells to elicit an anti-cancer immune response (8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Secretory proteins are synthesized on polysomes and translocated into the endoplasmic reticulum (ER). Inside ER, these proteins are often modified by disulfide bond formation, amino-linked glycosylation and folding. The ER contains a pool of molecular chaperones, including Grp94, to help ensure correct protein folding. Grp94 is a glucose-regulated protein (1) with sequence homology to Hsp90 (2). In addition to its role in helping to facilitate folding of a number of secretory proteins to their correct conformation (3), studies suggest that Grp94 derived from cancer cells also induces anti-tumor immune responses in mouse tumor models (4, 5). One way in which Grp94 promotes tumor immunogenicity is its ability to bind to and present tumor-derived peptides as antigens (6). Furthermore, Grp94 has also been shown to induce maturation of dendritic cells (7). Taken together, Grp94 functions both as a tumor-specific antigen and as an activator of antigen-presenting cells to elicit an anti-cancer immune response (8).