20% off purchase of 3 or more products* | Learn More >>

Rat Nuclear Export

Also showing Mouse Nuclear Export

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). hnRNP A1 regulates the alternative splicing of c-Src and c-H-Ras (2,3) and modifies initiation of translation of the fibroblast growth factor 2 mRNA (4). hnRNP A1 expression level is elevated in many cancers; knockdown of hnRNP A1 leads to apoptosis in various cancer cells (5). Although predominantly nuclear, hnRNP A1 is continually transported from the nucleus to the cytoplasm where it disassociates from mRNA and is rapidly re-imported into the nucleus (6,7). hnRNP A1 binds to cis-acting repressive sequences (CRS) of HIV-1 to influence HIV-1 production (8,9). HIV-1 enhances hnRNP A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). hnRNP A1 regulates the alternative splicing of c-Src and c-H-Ras (2,3) and modifies initiation of translation of the fibroblast growth factor 2 mRNA (4). hnRNP A1 expression level is elevated in many cancers; knockdown of hnRNP A1 leads to apoptosis in various cancer cells (5). Although predominantly nuclear, hnRNP A1 is continually transported from the nucleus to the cytoplasm where it disassociates from mRNA and is rapidly re-imported into the nucleus (6,7). hnRNP A1 binds to cis-acting repressive sequences (CRS) of HIV-1 to influence HIV-1 production (8,9). HIV-1 enhances hnRNP A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). hnRNP A1 regulates the alternative splicing of c-Src and c-H-Ras (2,3) and modifies initiation of translation of the fibroblast growth factor 2 mRNA (4). hnRNP A1 expression level is elevated in many cancers; knockdown of hnRNP A1 leads to apoptosis in various cancer cells (5). Although predominantly nuclear, hnRNP A1 is continually transported from the nucleus to the cytoplasm where it disassociates from mRNA and is rapidly re-imported into the nucleus (6,7). hnRNP A1 binds to cis-acting repressive sequences (CRS) of HIV-1 to influence HIV-1 production (8,9). HIV-1 enhances hnRNP A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm (10).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Mouse, Rat

Application Methods: Western Blotting

Background: Spinocerebellar ataxia 1 (SCA1), an autosomal dominant neurodegenerative disorder, is characterized by slurred speech, loss of limb coordination, and gait abnormalities resulting from the degeneration of cerebellar Purkinje cells and of a subset of brainstem neurons (1). Individuals with SCA1 have a highly polymorphic CAG repeat expansion encoding a polyglutamine tract in ataxin-1 (2). Akt phosphorylates ataxin-1 at Ser776, which regulates an association with 14-3-3. This interaction increases ataxin-1 stabilization and accumulation resulting in enhanced neurodegeneration (3). In addition, HSP70 controls the effect that phosphorylation has on ataxin-1 stability (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Mucosa-associated lymphoid tissue translocation gene 1 (MALT1) is a paracaspase that is a critical mediator of T-cell receptor activation of NF-κB and may contribute to the progression of MALT lymphomas (1-4). It contains two immunoglobulin-like domains, an amino-terminal death domain and a carboxy-terminal caspase-like domain. Association of MALT1 with Bcl-10 and CARD11/Carma1 leads to activation of IKK and subsequent stimulation of NF-κB, resulting in increased proliferation and inhibition of apoptosis (5,6). A common translocation in MALT B-cell non-Hodgkin lymphomas t(11;18)(q21;q21) results in the fusion of the amino terminus of API2 (c-IAP2), a member of the inhibitor of apoptosis protein family, to the carboxy terminus of MALT1 (1,2). The API2-MALT1 fusion protein likely leads to deregulation of NF-κB, contributing to increased oncogenic potential (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The nuclear pore complex (NPC) is a multi-subunit protein channel that spans the nuclear envelope and is responsible for the nucleocytoplasmic trafficking of RNA, proteins, and ribonucleoproteins (1). The 88 kDa nucleoporin protein (NUP88) is located on the cytoplasmic side of the NPC and found to be a part of a subcomplex with the NUP214 NPC subunit (1-3). This NUP88/NUP214 subcomplex interacts with CRM-1/exportin-1 to play an important role in the export of proteins, including the 60S ribosomal particle from the nucleus (4,5). Research studies demonstrate elevated expression and cytoplasmic accumulation of NUP88, visible as granular dots, in ovarian, prostate, and breast cancers (6-9). Increased NUP88 levels correlate with higher tumor grade, suggesting that NUP88 may be a putative tumor marker (1,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: mRNA export is a process that is tightly coupled to mRNA splicing (1-4). Splicing and packaging of mRNAs in the form of an mRNA-protein complex (mRNP) leads to the recruitment of the mRNA export adaptor THOC4/ALY, via its interaction with the splicing factor UAP56, forming a large complex termed the transcription-export complex (TREX) (1,2,5). THOC4/ALY then directly interacts with NXF1/TAP, a part of the heterodimer that targets the mRNP to the nuclear pore complex, resulting in the shuttling of mRNP out of the nucleus and into the cytoplasm (1-3,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: U2 small nuclear RNA auxiliary factor 1 (U2AF1) is the small (35 kDa) subunit of the U2 auxiliary factor (U2AF) that plays an essential role in the splicing of pre-mRNA to generate functional mRNA transcripts. U2AF1 forms a heterodimer with the large (65 kDa) U2AF2 subunit to create the U2 auxiliary factor that recognizes the 3' splice site and facilitates spliceosome assembly (1-3). Research studies indicate that U2AF1 binds to the 3'-splice site consensus AG dinucleotide at the intron-exon boundary while U2AF2 recognizes and binds the polyprimidine tract upstream of the 3’ splice site. These two steps ensure accurate spliceosome assembly at splice sites (4-6). Mutations in the corresponding U2AF1 gene are associated with a type of hematopoietic stem cell disorder known as myelodysplastic syndrome (MDS), which can be characterized by low blood counts, anemia, and enhanced acute myeloid leukemia risk (7-9). Somatic U2AF1 mutations frequently affect highly conserved zinc finger protein regions that result in defective pre-mRNA splicing of genes involved in cell cycle progression and RNA processing pathways, contributing to MDS pathogenesis (7,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Nuclear cap-binding protein subunit 1 (NCBP1), also known as cap-binding protein 80 (CBP80), plays a role in nuclear pre-mRNA splicing (1,2). It has also been shown to function in the nonsense-mediated decay (NMD) of mRNAs where translation is prematurely terminated (3). NCBP1/CBP80 increases the efficiency of NMD by promoting the interaction of two active NMD components Upf1 and Upf2 (4).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Emerin is a broadly expressed integral protein of the nuclear inner membrane (1). It contains a LEM domain and binds to several nuclear proteins, such as BAF (barrier-to-autointegration factor) and A- and B-type lamins, which are important in nuclear functions (2-5). Emerin may regulate gene expression through binding to other transcriptional regulators (6,7). Emerin binds to β-catenin and inhibits its nuclear accumulation (8). Recent studies demonstrate that emerin is required for HIV-1 infectivity (9). Mutations in the gene encoding emerin (EMD) are a major cause of Emery-Dreifuss muscular dystrophy (EDMD), a disorder characterized by progressive skeletal muscle weakening (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Transforming growth factor-β (TGF-β) superfamily members are critical regulators of cell proliferation and differentiation, developmental patterning and morphogenesis, and disease pathogenesis (1-4). TGF-β elicits signaling through three cell surface receptors: type I (RI), type II (RII), and type III (RIII). Type I and type II receptors are serine/threonine kinases that form a heteromeric complex. In response to ligand binding, the type II receptors form a stable complex with the type I receptors allowing phosphorylation and activation of type I receptor kinases (5). The type III receptor, also known as betaglycan, is a transmembrane proteoglycan with a large extracellular domain that binds TGF-β with high affinity but lacks a cytoplasmic signaling domain (6,7). Expression of the type III receptor can regulate TGF-β signaling through presentation of the ligand to the signaling complex. The only known direct TGF-β signaling effectors are the Smad family proteins, which transduce signals from the cell surface directly to the nucleus to regulate target gene transcription (8,9).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Poly(A)-binding protein 2 (PABP2, PAPBN1) is a nuclear RNA-binding protein involved in the post-transcriptional processing of RNA molecules (1). The PABP2 protein enhances RNA polyadenylation by stimulating poly(A) polymerase (PAP) activity and facilitating the interaction between PAP and the cleavage and specificity factor (CPSF) to regulate poly(A) tail length (2-4). The role that PABP2 plays in regulating poly(A) tail formation and site selection may be important in influencing the length of the 3’ untranslated region (UTR), which can alter transcript stability and translation by RNA binding proteins and miRNAs (1,5). Mutations in the corresponding PABPN1 gene can result in oculopharyngeal muscular dystrophy (OPMD), an autosomal dominant muscle disorder characterized by weakness in proximal limb muscles, ptosis, and dysphagia (1,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: SF2/ASF is a member of the Ser-Arg-rich (SR) protein family of highly conserved nuclear phosphoproteins involved in pre-mRNA splicing (1). Besides its role in nuclear pre-mRNA splicing, SF2/ASF has been shown to shuttle between the nucleus and cytoplasm, suggesting additional roles in mRNA transport and cytoplasmic events (2). SF2/ASF associates with translating ribosomes and stimulates translation (3). It also activates translation initiation by suppressing the activity of 4E-BP1, which is mediated by SF2/ASF association with mTOR and the phosphatase PP2A (4). More recent studies have demonstrated a role for SF2/ASF in microRNA processing (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: SF2/ASF is a member of the Ser-Arg-rich (SR) protein family of highly conserved nuclear phosphoproteins involved in pre-mRNA splicing (1). Besides its role in nuclear pre-mRNA splicing, SF2/ASF has been shown to shuttle between the nucleus and cytoplasm, suggesting additional roles in mRNA transport and cytoplasmic events (2). SF2/ASF associates with translating ribosomes and stimulates translation (3). It also activates translation initiation by suppressing the activity of 4E-BP1, which is mediated by SF2/ASF association with mTOR and the phosphatase PP2A (4). More recent studies have demonstrated a role for SF2/ASF in microRNA processing (5).