Microsize antibodies for $99 | Learn More >>

Rat Transport Vesicle

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Rab11a, Rab11b and Rab25 are members of the Rab11 family of small Ras-like GTPases. Rab11 (isoforms Rab11a and Rab11b) functions as a key regulator in the recycling of perinuclear, plasma membrane and Golgi compartment endosomes (1,2). Despite some overlap, distinct differences exist between Rab11a and Rab11b in both their cellular distribution and functional roles. Rab11a is ubiquitously expressed while Rab11b is found mainly in the heart and brain (3,4). Like other Rab proteins, Rab11 exerts its function via interactions with Rab11 family interacting proteins (FIPs). While there are three distinct classes of FIPs, all appear to share a conserved carboxy-terminal Rab-binding domain that allows Rab-FIP protein interaction. When bound together, these proteins are thought to regulate membrane-associated protein sorting (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rab11a, Rab11b and Rab25 are members of the Rab11 family of small Ras-like GTPases. Rab11 (isoforms Rab11a and Rab11b) functions as a key regulator in the recycling of perinuclear, plasma membrane and Golgi compartment endosomes (1,2). Despite some overlap, distinct differences exist between Rab11a and Rab11b in both their cellular distribution and functional roles. Rab11a is ubiquitously expressed while Rab11b is found mainly in the heart and brain (3,4). Like other Rab proteins, Rab11 exerts its function via interactions with Rab11 family interacting proteins (FIPs). While there are three distinct classes of FIPs, all appear to share a conserved carboxy-terminal Rab-binding domain that allows Rab-FIP protein interaction. When bound together, these proteins are thought to regulate membrane-associated protein sorting (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Rab11a, Rab11b and Rab25 are members of the Rab11 family of small Ras-like GTPases. Rab11 (isoforms Rab11a and Rab11b) functions as a key regulator in the recycling of perinuclear, plasma membrane and Golgi compartment endosomes (1,2). Despite some overlap, distinct differences exist between Rab11a and Rab11b in both their cellular distribution and functional roles. Rab11a is ubiquitously expressed while Rab11b is found mainly in the heart and brain (3,4). Like other Rab proteins, Rab11 exerts its function via interactions with Rab11 family interacting proteins (FIPs). While there are three distinct classes of FIPs, all appear to share a conserved carboxy-terminal Rab-binding domain that allows Rab-FIP protein interaction. When bound together, these proteins are thought to regulate membrane-associated protein sorting (5,6).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Rab8 GTPase is a member of the Ras superfamily that functions in protein transport and membrane restructuring (1). Studies show that Rab8 is localized to the trans Golgi network (TGN), basolateral membrane, and vesicular structures where it helps regulate target protein transport between TGN and the basolateral membrane (1-3). Overexpression studies and mutation analysis of Rab8 and its associated Rab8GEF indicate additional roles in actin and microtubule remodeling during polarized membrane transport and membrane protrusion formation (4-6). Rab8 associates with myosin Vb and is required for translocation of GLUT4 following insulin stimulation in muscle (7,8). Control of target protein vesicle transport by Rab8 also regulates MT1-MMP activity during extracellular matrix formation and JRAB/MICAL-L2 at tight junction formation (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The coat protein complex II (COPII) is composed of five cytosolic proteins and includes the Sec23/24 complex, the Sec13/31 complex, and Sar1. The COPII coat is located at the ER/Golgi interface and is involved in transport of newly synthesized proteins from the ER to the Golgi apparatus (1). COPII formation is initiated through the binding of the activated G protein, Sar1, to the Sec23/24 complex to form a pre-budding complex that directly binds target molecules (1-3). This pre-budding complex further recruits Sec13/31 to form mature COPII coat (4,5). The Sec31 subunit of COPII coat interacts with Sec13 at the ER exit and is required for both vesicle formation and ER-Golgi transport. Two isoforms of human Sec31 have been identified, Sec31A and Sec31B, which share a sequence homology of 47.3% (6-8). Sec31A is ubiquitously expressed in tissues and organs, whereas Sec31B is enriched in brain and testis (7,8). In classical Hodgkin lymphoma, a novel fusion of Jak2 with Sec31A renders Jak2 constitutively active and subject to Jak2 inhibitor effects (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: A group of related glucose transporters (Glut1-5 and 7) mediate the facilitated diffusion of glucose in nonepithelial mammalian tissues. Within insulin-responsive tissues such as muscle and fat, Glut1 contributes to basal glucose uptake while Glut4 is responsible for insulin-stimulated glucose transport (1-3). Glut4 is a 12-transmembrane domain protein that facilitates glucose transport in the direction of the glucose gradient. This transporter localizes to intracellular organelles (endosomes) in unstimulated cells and translocates to the cell surface following insulin stimulation (1,2,4). Translocation of Glut4 is dependent on Akt, which may act by phosphorylating AS160, a RabGAP protein involved in membrane trafficking (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The coat protein complex II (COPII) is composed of five cytosolic proteins and includes the Sec23/24 complex, the Sec13/31 complex, and Sar1. The COPII coat is located at the ER/Golgi interface and is involved in transport of newly synthesized proteins from the ER to the Golgi apparatus (1). COPII formation is initiated through the binding of the activated G protein, Sar1, to the Sec23/24 complex to form a pre-budding complex that directly binds target molecules (1-3). This pre-budding complex further recruits Sec13/31 to form mature COPII coat (4,5). The Sec31 subunit of COPII coat interacts with Sec13 at the ER exit and is required for both vesicle formation and ER-Golgi transport. Two isoforms of human Sec31 have been identified, Sec31A and Sec31B, which share a sequence homology of 47.3% (6-8). Sec31A is ubiquitously expressed in tissues and organs, whereas Sec31B is enriched in brain and testis (7,8). In classical Hodgkin lymphoma, a novel fusion of Jak2 with Sec31A renders Jak2 constitutively active and subject to Jak2 inhibitor effects (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Insulin-like growth factor II (IGF-II) receptor, also widely known as cation-independent mannose 6-phosphate receptor (CI-M6PR), is a multifunctional type I transmembrane glycoprotein that participates in the internalization of mannose-6-phosphate modified hydrolases and IGF-II from the plasma membrane (1,2). In the absence of ligands, IGF-II receptor is constitutively endocytosed from the cell surface to accumulate in the Golgi apparatus (3). In the presence of ligands, the receptor transports the mannose-6-phosphate modified hydrolases to acidified endosomes and lysosomes (4). The ligand-free receptor is then transported back to the Golgi compartment or the cell surface (4). In several research studies, IGF-II receptor has been recognized as a tumor suppressor in a number of cancers (5-7).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Insulin-like growth factor II (IGF-II) receptor, also widely known as cation-independent mannose 6-phosphate receptor (CI-M6PR), is a multifunctional type I transmembrane glycoprotein that participates in the internalization of mannose-6-phosphate modified hydrolases and IGF-II from the plasma membrane (1,2). In the absence of ligands, IGF-II receptor is constitutively endocytosed from the cell surface to accumulate in the Golgi apparatus (3). In the presence of ligands, the receptor transports the mannose-6-phosphate modified hydrolases to acidified endosomes and lysosomes (4). The ligand-free receptor is then transported back to the Golgi compartment or the cell surface (4). In several research studies, IGF-II receptor has been recognized as a tumor suppressor in a number of cancers (5-7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Amyloid β (Aβ) precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms (1). The amino acid sequence of APP contains the amyloid domain, which can be released by a two-step proteolytic cleavage (1). The extracellular deposition and accumulation of the released Aβ fragments form the main components of amyloid plaques in Alzheimer's disease (1). APP can be phosphorylated at several sites, which may affect the proteolytic processing and secretion of this protein (2-5). Phosphorylation at Thr668 (a position corresponding to the APP695 isoform) by cyclin-dependent kinase is cell-cycle dependent and peaks during G2/M phase (4). APP phosphorylated at Thr668 exists in adult rat brain and correlates with cultured neuronal differentiation (5,6).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The proprotein convertases (PCs) are enzymes that activate precursor proteins through proteolytic cleavage within the secretory pathway. PCs comprise several enzymes that are basic amino acid-specific proteinases (furin, PC1/3, PC2, PC4, PACE4, PC5/6, and PC7), as well as nonbasic amino acid convertases (S1P and PC9) (1). PCs have a common structure that includes an N-terminal signal peptide for secretory pathway targeting; a pro-domain that is thought to act as an intramolecular chaperone; a catalytic domain containing the active site; a P-domain that contributes to the overall folding of the enzyme by regulating stability, calcium-, and pH-dependence; and a C-terminal domain that interacts with the membrane (2). PCs act in a tissue- and substrate-specific fashion to generate an array of bioactive peptides and proteins from precursors, both in the brain and the periphery (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Amyloid β (Aβ) precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms (1). The amino acid sequence of APP contains the amyloid domain, which can be released by a two-step proteolytic cleavage (1). The extracellular deposition and accumulation of the released Aβ fragments form the main components of amyloid plaques in Alzheimer's disease (1). APP can be phosphorylated at several sites, which may affect the proteolytic processing and secretion of this protein (2-5). Phosphorylation at Thr668 (a position corresponding to the APP695 isoform) by cyclin-dependent kinase is cell-cycle dependent and peaks during G2/M phase (4). APP phosphorylated at Thr668 exists in adult rat brain and correlates with cultured neuronal differentiation (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: Three distinct PCTAIRE isoforms (PCTAIRE 1, PCTAIRE 2 and PCTAIRE 3) have been identified in humans and belong to the CDK family of serine/threonine protein kinases. These proteins have a core kinase domain flanked by unique amino- and carboxy-terminal domains. CDK proteins are known to regulate the cell cycle. All three PCTAIRE isoforms are abundantly expressed and catalytically active in post-mitotic brain, suggesting that they may function in processes other than cell division (1). PCTAIRE 1 is a cytoplasmic phosphoprotein whose kinase activity peaks in G2 and S phase (2). While one study indicates that noncovalent interactions with a regulatory component (such as a cyclin) are necessary for catalytic activity of PCTAIRE 1, others show that the monomeric protein is fully active (3). The Cdk5/p25 complex phosphorylates PCTAIRE 1 at Ser95, enhancing its kinase activity (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The proprotein convertases (PCs) are enzymes that activate precursor proteins through proteolytic cleavage within the secretory pathway. PCs comprise several enzymes that are basic amino acid-specific proteinases (furin, PC1/3, PC2, PC4, PACE4, PC5/6, and PC7), as well as nonbasic amino acid convertases (S1P and PC9) (1). PCs have a common structure that includes an N-terminal signal peptide for secretory pathway targeting; a pro-domain that is thought to act as an intramolecular chaperone; a catalytic domain containing the active site; a P-domain that contributes to the overall folding of the enzyme by regulating stability, calcium-, and pH-dependence; and a C-terminal domain that interacts with the membrane (2). PCs act in a tissue- and substrate-specific fashion to generate an array of bioactive peptides and proteins from precursors, both in the brain and the periphery (3).