Microsize antibodies for $99 | Learn More >>

siRNA Focal Adhesion

$262
3 nmol
300 µl
SignalSilence® FAK siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit FAK expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Focal adhesion kinase (FAK) is a widely expressed cytoplasmic protein tyrosine kinase involved in integrin-mediated signal transduction. It plays an important role in the control of several biological processes, including cell spreading, migration, and survival (1). Activation of FAK by integrin clustering leads to autophosphorylation at Tyr397, which is a binding site for the Src family kinases PI3K and PLCγ (2-5). Recruitment of Src family kinases results in the phosphorylation of Tyr407, Tyr576, and Tyr577 in the catalytic domain, and Tyr871 and Tyr925 in the carboxy-terminal region of FAK (6,7).

$262
3 nmol
300 µl
SignalSilence® VASP siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit VASP expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Vasodilator-stimulated phosphoprotein (VASP) was originally characterized as a substrate of both cGMP- and cAMP-dependent kinases (PKG and PKA, or cGPK and cAPK, respectively) (1). It is now believed that VASP belongs to the Ena/VASP family of adaptor proteins linking the cytoskeletal system to the signal transduction pathways and that it functions in cytoskeletal organization, fibroblast migration, platelet activation and axon guidance (2,3). Three phosphorylation sites, Ser157, Ser239, and Thr278, have been identified. Ser239 is the major PKG phosphorylation site while Ser157 is the major PKA phosphorylation site (4). Evidence suggests that VASP phosphorylation reduces its association with actin and has a negative effect on actin polymerization (5). Phosphorylation at Ser239 of VASP is a useful marker for monitoring PKG activation and signaling (6,7).

$262
3 nmol
300 µl
SignalSilence® PDK1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit PDK1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Phosphoinositide-dependent protein kinase 1 (PDK1) plays a central role in many signal transduction pathways (1,2) including the activation of Akt and the PKC isoenzymes p70 S6 kinase and RSK (3). Through its effects on these kinases, PDK1 is involved in the regulation of a wide variety of processes, including cell proliferation, differentiation and apoptosis.

$262
3 nmol
300 µl
SignalSilence® ILK1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit ILK1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Integrin-linked kinases (ILKs) couple integrins and growth factors to downstream pathways involved in cell survival, cell cycle control, cell-cell adhesion and cell motility (1). ILK functions as a scaffold bridging the extracellular matrix (ECM) and growth factor receptors to the actin cytoskeleton through interactions with integrin, PINCH (which links ILK to the RTKs via Nck2), CH-ILKBP and affixin (1). ILK phosphorylates Akt at Ser473, GSK-3 on Ser9, myosin light chain 2 (MLC2) on Ser18/Thr19, as well as affixin (2-5). These phosphorylation events are key regulatory steps in modulating the activities of the targets. ILK activity is stimulated by PI3 kinase and negatively regulated by the tumor suppressor PTEN and a PP2C protein phosphatase, ILKAP (1,3,6). It has been suggested that the conserved Ser343 residue in the activation loop plays a key role in the activation of ILK1 (2).

$262
3 nmol
300 µl
SignalSilence® β-Catenin siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit β-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$262
3 nmol
300 µl
SignalSilence® β-Catenin siRNA II (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit β-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$262
3 nmol
300 µl
SignalSilence® EGF Receptor siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit EGF Receptor expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce protein expression in specified cell lines.
REACTIVITY
Human

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

$262
3 nmol
300 µl
SignalSilence® Moesin siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit moesin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The ezrin, radixin, and moesin (ERM) proteins function as linkers between the plasma membrane and the actin cytoskeleton and are involved in cell adhesion, membrane ruffling, and microvilli formation (1). ERM proteins undergo intra or intermolecular interaction between their amino- and carboxy-terminal domains, existing as inactive cytosolic monomers or dimers (2). Phosphorylation at a carboxy-terminal threonine residue (Thr567 of ezrin, Thr564 of radixin, Thr558 of moesin) disrupts the amino- and carboxy-terminal association and may play a key role in regulating ERM protein conformation and function (3,4). Phosphorylation at Thr567 of ezrin is required for cytoskeletal rearrangements and oncogene-induced transformation (5). Ezrin is also phosphorylated at tyrosine residues upon growth factor stimulation. Phosphorylation of Tyr353 of ezrin transmits a survival signal during epithelial differentiation (6).

$262
3 nmol
300 µl
SignalSilence® MEK1 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit MEK1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: MEK1 and MEK2, also called MAPK or Erk kinases, are dual-specificity protein kinases that function in a mitogen activated protein kinase cascade controlling cell growth and differentiation (1-3). Activation of MEK1 and MEK2 occurs through phosphorylation of two serine residues at positions 217 and 221, located in the activation loop of subdomain VIII, by Raf-like molecules. MEK1/2 is activated by a wide variety of growth factors and cytokines and also by membrane depolarization and calcium influx (1-4). Constitutively active forms of MEK1/2 are sufficient for the transformation of NIH/3T3 cells or the differentiation of PC-12 cells (4). MEK activates p44 and p42 MAP kinase by phosphorylating both threonine and tyrosine residues at sites located within the activation loop of kinase subdomain VIII.

$262
3 nmol
300 µl
SignalSilence® β-Catenin siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit β-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$262
3 nmol
300 µl
SignalSilence® Cofilin siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit cofilin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Cofilin and actin-depolymerization factor (ADF) are members of a family of essential conserved small actin-binding proteins that play pivotal roles in cytokinesis, endocytosis, embryonic development, stress response, and tissue regeneration (1). In response to stimuli, cofilin promotes the regeneration of actin filaments by severing preexisting filaments (2). The severing activity of cofilin is inhibited by LIMK or TESK phosphorylation at Ser3 of cofilin (3-5). Phosphorylation at Ser3 also regulates cofilin translocation from the nucleus to the cytoplasm (6).

$262
50-100 transfections
300 µl
SignalSilence® MEK2 siRNA from Cell Signaling Technology allows the researcher to specifically inhibit MEK2 expression using RNA interference, a method in which gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce protein expression in specified cell lines.
REACTIVITY
Human

Background: MEK1 and MEK2, also called MAPK or Erk kinases, are dual-specificity protein kinases that function in a mitogen activated protein kinase cascade controlling cell growth and differentiation (1-3). Activation of MEK1 and MEK2 occurs through phosphorylation of two serine residues at positions 217 and 221, located in the activation loop of subdomain VIII, by Raf-like molecules. MEK1/2 is activated by a wide variety of growth factors and cytokines and also by membrane depolarization and calcium influx (1-4). Constitutively active forms of MEK1/2 are sufficient for the transformation of NIH/3T3 cells or the differentiation of PC-12 cells (4). MEK activates p44 and p42 MAP kinase by phosphorylating both threonine and tyrosine residues at sites located within the activation loop of kinase subdomain VIII.

$262
3 nmol
300 µl
SignalSilence® p42 MAPK (Erk2) siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit p42 MAP Kinase expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Mitogen-activated protein kinases (MAPKs) are a widely conserved family of serine/threonine protein kinases involved in many cellular programs, such as cell proliferation, differentiation, motility, and death. The p44/42 MAPK (Erk1/2) signaling pathway can be activated in response to a diverse range of extracellular stimuli including mitogens, growth factors, and cytokines (1-3), and research investigators consider it an important target in the diagnosis and treatment of cancer (4). Upon stimulation, a sequential three-part protein kinase cascade is initiated, consisting of a MAP kinase kinase kinase (MAPKKK or MAP3K), a MAP kinase kinase (MAPKK or MAP2K), and a MAP kinase (MAPK). Multiple p44/42 MAP3Ks have been identified, including members of the Raf family, as well as Mos and Tpl2/COT. MEK1 and MEK2 are the primary MAPKKs in this pathway (5,6). MEK1 and MEK2 activate p44 and p42 through phosphorylation of activation loop residues Thr202/Tyr204 and Thr185/Tyr187, respectively. Several downstream targets of p44/42 have been identified, including p90RSK (7) and the transcription factor Elk-1 (8,9). p44/42 are negatively regulated by a family of dual-specificity (Thr/Tyr) MAPK phosphatases, known as DUSPs or MKPs (10), along with MEK inhibitors, such as U0126 and PD98059.

$262
3 nmol
300 µl
SignalSilence® ADAM9 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit ADAM9 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The ADAM (A Disintegrin and A Metalloprotease) family of multidomain membrane proteins influences cell signaling and adhesion by shedding cell surface proteins such as cytokines and growth factors, by influencing cell adhesion to the extracellular matrix (ECM), and by directly remodeling the ECM. Conserved domains in ADAM family members include a prodomain, a zinc-dependent metalloprotease domain, a disintegrin domain, a cysteine-rich domain, an EGF-like sequence, and a short cytoplasmic tail (1,2).The prodomain is thought to aid in protein folding. Disintegrin and cysteine-rich domains mediate adhesion, at least in part, through binding to integrins. Phosphorylation of the cytoplasmic tail as well as its interaction with other signaling proteins may influence intra- and extracellular signaling (1). ADAM9 is widely distributed and has been shown to affect migration in skin keratinocytes (3,4). Research studies have shown that ADAM9 is overexpressed in prostate cancer (5), pancreatic cancer (6), gastric cancer (7), and has been linked to invasion and metastasis in small cell lung cancer (8). Research has also shown that an alternatively spliced short (50 kDa) form of ADAM9 containing protease activity is involved in tumor cell invasion (9).

$262
3 nmol
300 µl
SignalSilence® Ezrin siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit ezrin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The ezrin, radixin, and moesin (ERM) proteins function as linkers between the plasma membrane and the actin cytoskeleton and are involved in cell adhesion, membrane ruffling, and microvilli formation (1). ERM proteins undergo intra or intermolecular interaction between their amino- and carboxy-terminal domains, existing as inactive cytosolic monomers or dimers (2). Phosphorylation at a carboxy-terminal threonine residue (Thr567 of ezrin, Thr564 of radixin, Thr558 of moesin) disrupts the amino- and carboxy-terminal association and may play a key role in regulating ERM protein conformation and function (3,4). Phosphorylation at Thr567 of ezrin is required for cytoskeletal rearrangements and oncogene-induced transformation (5). Ezrin is also phosphorylated at tyrosine residues upon growth factor stimulation. Phosphorylation of Tyr353 of ezrin transmits a survival signal during epithelial differentiation (6).

$262
3 nmol
300 µl
SignalSilence® γ-Catenin siRNA I (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit γ-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: Also known as plakoglobin, γ-catenin is a member of the Armadillo family of signaling molecules, which includes β-catenin and the Drosophila protein armadillo (1). This family of proteins is involved in Wnt signaling, which is important in embryonic development and in tumorigenesis (2-3). Although the two vertebrate proteins β- and γ-catenin display sequence homology, γ-catenin likely plays a role distinct from that of β-catenin (1, 4-6). γ-catenin localizes to desmosomes and adherens junctions, both sites of intercellular adhesion, and interacts with the cytoplasmic domains of classical and desmosomal cadherins. Interaction of γ- or β-catenin with α-catenin, desmoplakin and other junction proteins provides a link between intercellular junctions and the actin and intermediate filament cytoskeleton. Maintenance and/or modification of this link is vital for control of cell adhesion and migration (1). γ-catenin is modified by phosphorylation, affecting both adhesion and β-catenin dependent transcription (7), and by and O-glycosylation, affecting adhesion (8). Recent evidence suggests that γ-catenin regulates desmosomal adhesion in response to growth factor stimulation (9).

$262
3 nmol
300 µl
SignalSilence® γ-Catenin siRNA II (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit γ-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis
REACTIVITY
Mouse

Background: Also known as plakoglobin, γ-catenin is a member of the Armadillo family of signaling molecules, which includes β-catenin and the Drosophila protein armadillo (1). This family of proteins is involved in Wnt signaling, which is important in embryonic development and in tumorigenesis (2-3). Although the two vertebrate proteins β- and γ-catenin display sequence homology, γ-catenin likely plays a role distinct from that of β-catenin (1, 4-6). γ-catenin localizes to desmosomes and adherens junctions, both sites of intercellular adhesion, and interacts with the cytoplasmic domains of classical and desmosomal cadherins. Interaction of γ- or β-catenin with α-catenin, desmoplakin and other junction proteins provides a link between intercellular junctions and the actin and intermediate filament cytoskeleton. Maintenance and/or modification of this link is vital for control of cell adhesion and migration (1). γ-catenin is modified by phosphorylation, affecting both adhesion and β-catenin dependent transcription (7), and by and O-glycosylation, affecting adhesion (8). Recent evidence suggests that γ-catenin regulates desmosomal adhesion in response to growth factor stimulation (9).

$262
3 nmol
300 µl
SignalSilence® β-Catenin siRNA I (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit β-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$262
3 nmol
300 µl
SignalSilence® MEK1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit MEK1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: MEK1 and MEK2, also called MAPK or Erk kinases, are dual-specificity protein kinases that function in a mitogen activated protein kinase cascade controlling cell growth and differentiation (1-3). Activation of MEK1 and MEK2 occurs through phosphorylation of two serine residues at positions 217 and 221, located in the activation loop of subdomain VIII, by Raf-like molecules. MEK1/2 is activated by a wide variety of growth factors and cytokines and also by membrane depolarization and calcium influx (1-4). Constitutively active forms of MEK1/2 are sufficient for the transformation of NIH/3T3 cells or the differentiation of PC-12 cells (4). MEK activates p44 and p42 MAP kinase by phosphorylating both threonine and tyrosine residues at sites located within the activation loop of kinase subdomain VIII.

$262
3 nmol
300 µl
SignalSilence® EGF Receptor siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit EGF Receptor expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce protein expression in specified cell lines.
REACTIVITY
Human

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).