20% off purchase of 3 or more products* | Learn More >>

siRNA Nuclear Mrna Splicing

Also showing siRNA Transfection Nuclear Mrna Splicing

$262
3 nmol
300 µl
SignalSilence® hnRNP A1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit hnRNP A1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). hnRNP A1 regulates the alternative splicing of c-Src and c-H-Ras (2,3) and modifies initiation of translation of the fibroblast growth factor 2 mRNA (4). hnRNP A1 expression level is elevated in many cancers; knockdown of hnRNP A1 leads to apoptosis in various cancer cells (5). Although predominantly nuclear, hnRNP A1 is continually transported from the nucleus to the cytoplasm where it disassociates from mRNA and is rapidly re-imported into the nucleus (6,7). hnRNP A1 binds to cis-acting repressive sequences (CRS) of HIV-1 to influence HIV-1 production (8,9). HIV-1 enhances hnRNP A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm (10).

$262
3 nmol
300 µl
SignalSilence® AUF1/hnRNP D siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit AUF1/hnRNP D expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: AU-rich element RNA binding protein 1 (AUF1) is also known as heterogeneous ribonucleoprotein D (hnRNP D). AUF1 binds to the AU rich element (ARE) of target mRNA and regulates mRNA decay (1,2). It has a broad range of target genes including IL-1, IL-2, IL-3, Myc, TNF-α, and cyclin D1 (2). Binding of AUF1 to Myc mRNA also affects translation of Myc (3). Recent studies have provided evidence that AUF1 is also involved in the regulation of transcription. AUF1 binds to the promoters of various genes including complement receptor 2 (4), enkephalin (5), and α-fetoprotein (6). AUF1 also binds to the telomerase catalytic subunit Tert promoter and the G-rich telomeric repeat, thus regulating telomere maintenance and normal aging (7,8). AUF1 has four isoforms produced by alternative splicing of a single transcript: p37, p40, p42, and p45 (9,10). All AUF1 isoforms shuttle between the nucleus and cytoplasm (11, 12). These isoforms have distinct localization and bind to different target mRNAs that contribute to the diversity of AUF1 function (2).

$262
3 nmol
300 µl
SignalSilence® DDX5 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit DDX5 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: DDX5 (DEAD box polypeptide 5), also known as p68, was first identified as a 68 kDa nuclear protein with similarity to translation initiation factor eIF-4A (1). DDX5 is a member of the DEAD box family of putative RNA helicases, defined by the presence of a conserved DEAD (Asp-Glu-Ala-Asp) motif that appears to function primarily in the regulation of RNA secondary structure. DDX5 exhibits ATP-dependent RNA helicase activity (2) and has been identified as a critical subunit of the DROSHA complex that regulates miRNA and rRNA processing (3,4). DDX may also regulate mRNA splicing (5) and has been shown to interact with HDAC1, where it can regulate promoter-specific transcription (6). DDX5 interacts with a diverse group of proteins, including Runx2, p53, Smad3, CBP, and p300 (7-10), suggesting an important role for DDX5 in a multitude of developmental processes. Notably, DDX5 may be involved in growth factor-induced epithelial mesechymal transition (EMT). Phosphorylation of DDX5 at Tyr593 following PDGF stimulation was shown to displace Axin from β-catenin; this prevented phosphorylation of β-catenin by GSK-3β, leading to Wnt-independent nuclear translocation of β-catenin (11) and increased transcription of c-Myc, cyclin D1, and Snai1 (12,13).

$262
3 nmol
300 µl
SignalSilence® YB1 siRNA from Cell Signaling Technology (CST) allows the researcher to specifically inhibit YB1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce target protein expression in specified cell lines.
REACTIVITY
Human

Background: The Y-box binding protein 1 (YB1) belongs to a family of evolutionarily conserved, multifunctional Y-box proteins that bind single-stranded DNA and RNA and function as regulators of transcription, RNA metabolism, and protein synthesis (1). YB1 binds to Y-box sequences (TAACC) found in multiple gene promoters and can positively or negatively regulate transcription. YB1 activates genes associated with proliferation and cancer, such as cyclin A, cyclin B1, matrix metalloproteinase-2 (MMP-2), and the multi-drug resistance 1 (MDR1) gene (2-4). YB1 represses genes associated with cell death, including the Fas cell death-associated receptor and the p53 tumor suppressor gene (5-7). It also interacts with the RNA-splicing factor SRp30c and stabilizes interleukin-2 (IL-2) mRNA upon induction of T lymphocytes by IL-2 (8,9). The majority of YB1 protein localizes to the cytoplasm, with a minor pool found in the nucleus; however, nuclear localization appears to be critical for its role in promoting proliferation. Nuclear translocation is cell cycle regulated, with YB1 protein accumulating in the nucleus during G1/S phase (2). In addition, nuclear translocation is induced in response to extracellular stimuli such as hyperthermia and UV irradiation, or treatment of cells with thrombin, interferons, or insulin-like growth factor (IGF-I) (2,10). Treatment of the MCF7 breast cancer cell line with IGF-I results in Akt-mediated phosphorylation of YB1 at Ser102, which is required for nuclear translocation of YB1 and its ability to promote anchorage-independent growth (10). Research studies have shown that YB1 is overexpressed in many malignant tissues, including breast cancer, non-small cell lung carcinoma, ovarian adenocarcinomas, human osteosarcomas, colorectal carcinomas, and malignant melanomas. Investigators have shown that nuclear YB1 expression correlates with high levels of proliferation, drug resistance, and poor tumor prognosis (2,7,10).

$262
3 nmol
300 µl
SignalSilence® YB1 siRNA from Cell Signaling Technology (CST) allows the researcher to specifically inhibit YB1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce target protein expression in specified cell lines.
REACTIVITY
Human

Background: The Y-box binding protein 1 (YB1) belongs to a family of evolutionarily conserved, multifunctional Y-box proteins that bind single-stranded DNA and RNA and function as regulators of transcription, RNA metabolism, and protein synthesis (1). YB1 binds to Y-box sequences (TAACC) found in multiple gene promoters and can positively or negatively regulate transcription. YB1 activates genes associated with proliferation and cancer, such as cyclin A, cyclin B1, matrix metalloproteinase-2 (MMP-2), and the multi-drug resistance 1 (MDR1) gene (2-4). YB1 represses genes associated with cell death, including the Fas cell death-associated receptor and the p53 tumor suppressor gene (5-7). It also interacts with the RNA-splicing factor SRp30c and stabilizes interleukin-2 (IL-2) mRNA upon induction of T lymphocytes by IL-2 (8,9). The majority of YB1 protein localizes to the cytoplasm, with a minor pool found in the nucleus; however, nuclear localization appears to be critical for its role in promoting proliferation. Nuclear translocation is cell cycle regulated, with YB1 protein accumulating in the nucleus during G1/S phase (2). In addition, nuclear translocation is induced in response to extracellular stimuli such as hyperthermia and UV irradiation, or treatment of cells with thrombin, interferons, or insulin-like growth factor (IGF-I) (2,10). Treatment of the MCF7 breast cancer cell line with IGF-I results in Akt-mediated phosphorylation of YB1 at Ser102, which is required for nuclear translocation of YB1 and its ability to promote anchorage-independent growth (10). Research studies have shown that YB1 is overexpressed in many malignant tissues, including breast cancer, non-small cell lung carcinoma, ovarian adenocarcinomas, human osteosarcomas, colorectal carcinomas, and malignant melanomas. Investigators have shown that nuclear YB1 expression correlates with high levels of proliferation, drug resistance, and poor tumor prognosis (2,7,10).