Revision 1

#26791

Store at -20C

CST Logo
Orders:

877-616-CELL (2355)

[email protected]

Support:

877-678-TECH (8324)

3 Trask Lane | Danvers | Massachusetts | 01923 | USA

For Research Use Only. Not for Use in Diagnostic Procedures.

Product Includes Product # Quantity Mol. Wt Isotype/Source
alpha-Synuclein (D37A6) Rabbit Monoclonal Antibody417920 µl18 kDaRabbit IgG
GCase/GBA (E2R1L) Rabbit Monoclonal Antibody8816220 µl65 kDaRabbit IgG
Calnexin (C5C9) Rabbit Monoclonal Antibody267920 µl90 kDaRabbit IgG
BiP (C50B12) Rabbit Monoclonal Antibody317720 µl78 kDaRabbit IgG
Phospho-eIF2 alpha (Ser51) (D9G8) Rabbit Monoclonal Antibody339820 µl38 kDaRabbit IgG
eIF2 alpha (D7D3) Rabbit Monoclonal Antibody532420 µl38 kDaRabbit IgG
Atg12 (D88H11) Rabbit Monoclonal Antibody418020 µl16, 55 kDaRabbit IgG
CHOP (L63F7) Mouse Monoclonal Antibody289520 µl27 kDaMouse IgG2a
Anti-rabbit IgG, HRP-linked Antibody7074100 µlGoat
Anti-mouse IgG, HRP-linked Antibody7076100 µlHorse

Please visit cellsignal.com for individual component applications, species cross-reactivity, dilutions, protocols, and additional product information.

Description

The α-Synuclein ER Stress Antibody Sampler Kit provides an economical means to detect and evaluate α-Synuclein induced ER stress within the cell. The kit contains enough antibodies to perform two western blot experiments with each primary antibody.

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/mL BSA, 50% glycerol, and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Background

Secretory and transmembrane proteins are synthesized on polysomes and translocate into the endoplasmic reticulum (ER) where they are often modified by the formation of disulfide bonds, amino-linked glycosylation and folding. The ER contains a pool of molecular chaperone proteins, including calnexin and BiP. Calnexin is an ER membrane, calcium-binding protein that retains newly synthesized glycoproteins inside the ER to ensure proper folding and quality control (1,2). Irregular protein folding within the ER increases BiP synthesis, which binds misfolded proteins to prevent them from forming aggregates and to assist them to refold properly (3). ER homeostasis disruptions lead to the accumulation of unfolded proteins. The ER has developed an adaptive mechanism called the unfolded protein response (UPR) to counteract compromised protein folding (4). The protein kinase-like endoplasmic reticulum kinase (PERK) eIF2α kinase is an ER resident transmembrane protein that couples ER stress signals to translation inhibition. ER stress increases PERK activity, which phosphorylates eIF2α to reduce protein translation (5,6). During ER stress, the level of CHOP expression is also elevated and CHOP functions to mediate programmed cell death (7).

Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease (AD), is a progressive movement disorder characterized by rigidity, tremors, and postural instability. The pathological hallmark of PD is progressive loss of dopaminergic neurons in the substantia nigra of the ventral midbrain and the presence of intracellular Lewy bodies in surviving neurons of the brain stem (8). α-Synuclein, a 140 amino acid protein expressed abundantly in the brain, is a major component of aggregates found in Lewy bodies (9). Recent evidence suggests that aggregation of α-Synuclein induces ER stress while also reducing the ability of neurons to respond to protein misfolding through activation of the UPR. This increases ER fragmentation, impairs ER-to-Golgi trafficking and the maturation of proteins, and can induce lysosomal dysfunction downstream (10). β-glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the hydrolysis of glucocerebroside into free ceramide and glucose (11). Lysosomal breakdown of glucocerebroside is required for complex lipid cellular metabolism and proper cellular membrane turnover (12). Immature and misfolded forms of GCase can accumulate in the ER as a result of α-Synuclein aggregation, while the GCase that does reach the lysosome exhibits reduced enzymatic activity (10).

Mutations in GBA, the gene that encodes GCase, are the most common genetic risk factor for PD and another synucleinopathy, dementia with Lewy bodies (DLB) (10,13). These mutations can inhibit chaperone-mediated autophagy (CMA), a pathway that contributes to lysosomal function and ER homeostasis (14). Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (15,16). There are three classes of autophagy in mammalian cells: CMA, macroautophagy, and microautophagy. Mislocalization of GCase due to PD-linked mutations has been shown to increase accumulation of proteins that are degraded by CMA, including α-Synuclein, inducing a positive feedback loop that promotes further aggregation (14,17).

The blockage of the CMA pathway can lead to a compensatory increase in macroautophagy. Macroautophagy is classified by the formation of an autophagosome, which targets cargo for degradation through fusion with a lysosome (17,18). Formation of the autophagosome involves a ubiquitin-like conjugation system in which Atg12 is covalently bound to Atg5 and targeted to autophagosome vesicles (19-21).

Trademarks and Patents

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.

U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.

All other trademarks are the property of their respective owners. Visit cellsignal.com/trademarks for more information.

Limited Uses

Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.

Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.

Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) [email protected] Web: cellsignal.com
For Research Use Only. Not for Use in Diagnostic Procedures.