Buy 3 and get the 4th FREE!* | Learn More >>
14609
c-Fos (9F6) Rabbit mAb (PE Conjugate)
Antibody Conjugates

c-Fos (9F6) Rabbit mAb (PE Conjugate) #14609

Reviews ()
Citations (0)
Filter:
  1. F

Flow cytometric analysis of HeLa cells, untreated (blue) or treated with TPA #4174 (400 nM, 4 hr; green), using c-Fos (9F6) Rabbit mAb (PE Conjugate).

To Purchase # 14609S
Product # Size Price
14609S
100 µl  (50 tests) $ 305

Supporting Data

REACTIVITY H M R
SENSITIVITY Endogenous
MW (kDa)
Isotype Rabbit IgG

Application Key:

  • W-Western
  • IP-Immunoprecipitation
  • IHC-Immunohistochemistry
  • ChIP-Chromatin Immunoprecipitation
  • IF-Immunofluorescence
  • F-Flow Cytometry
  • E-P-ELISA-Peptide

Species Cross-Reactivity Key:

  • H-Human
  • M-Mouse
  • R-Rat
  • Hm-Hamster
  • Mk-Monkey
  • Mi-Mink
  • C-Chicken
  • Dm-D. melanogaster
  • X-Xenopus
  • Z-Zebrafish
  • B-Bovine
  • Dg-Dog
  • Pg-Pig
  • Sc-S. cerevisiae
  • Ce-C. elegans
  • Hr-Horse
  • All-All Species Expected

Product Description

This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated c-Fos (9F6) Rabbit mAb #2250.

Product Usage Information

Application Dilution
Flow Cytometry 1:50

Storage:

Supplied in PBS (pH 7.2), less than 0.1% sodium azide and 2 mg/ml BSA. Store at 4°C. Do not aliquot the antibodies. Protect from light. Do not freeze.

Protocol

PRINT

View >Collapse >

Flow Cytometry, Methanol Permeabilization Protocol for Directly Conjugated Antibodies

A. Solutions and Reagents

All reagents required for this protocol may be efficiently purchased together in our Intracellular Flow Cytometry Kit (Methanol) #13593, or individually using the catalog numbers listed below.

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 1X Phosphate Buffered Saline (PBS): To prepare 1 L 1X PBS: add 100 ml 10X PBS (#12528) to 900 ml water mix.
  2. 4% Formaldehyde, Methanol-Free (#47746)
  3. 100% Methanol (#13604): Chill before use
  4. Antibody Dilution Buffer: Purchase ready-to-use Flow Cytometry Antibody Dilution Buffer (#13616), or prepare a 0.5% BSA PBS buffer by dissolving 0.5 g Bovine Serum Albumin (BSA) (#9998) in 100 ml 1X PBS. Store at 4°C.

NOTE: When including fluorescent cellular dyes in your experiment (including viability dyes, DNA dyes, etc.), please refer to the dye product page for the recommended protocol. Visit www.cellsignal.com/flowdyes for a listing of cellular dyes validated for use in flow cytometry.

B. Fixation

NOTE: Adherent cells or tissue should be dissociated and in single-cell suspension prior to fixation.

NOTE: Optimal centrifugation conditions will vary depending upon cell type and reagent volume. Generally, 150-300g for 1-5 minutes will be sufficient to pellet the cells.

NOTE: If using whole blood, lyse red blood cells and wash by centrifugation prior to fixation.

NOTE: Antibodies targeting CD markers or other extracellular proteins may be added prior to fixation if the epitope is disrupted by formaldehyde and/or methanol. The antibodies will remain bound to the target of interest during the fixation and permeabilization process. However, note that some fluorophores (including PE and APC) are damaged by methanol and thus should not be added prior to permeabilization. Conduct a small-scale experiment if you are unsure.

  1. Pellet cells by centrifugation and remove supernatant.
  2. Resuspend cells in approximately 100 µl 4% formaldehyde per 1 million cells. Mix well to dissociate pellet and prevent cross-linking of individual cells.
  3. Fix for 15 min at room temperature (20-25°C).
  4. Wash by centrifugation with excess 1X PBS. Discard supernatant in appropriate waste container. Resuspend cells in 0.5-1 ml 1X PBS. Proceed to Permeabilization step.
    1. Alternatively, cells may be stored overnight at 4°C in 1X PBS.

C. Permeabilization

  1. Permeabilize cells by adding ice-cold 100% methanol slowly to pre-chilled cells, while gently vortexing, to a final concentration of 90% methanol.
  2. Permeabilize for a minimum of 10 min on ice.
  3. Proceed with immunostaining (Section D) or store cells at -20°C in 90% methanol.

D. Immunostaining

NOTE: Count cells using a hemocytometer or alternative method.

  1. Aliquot desired number of cells into tubes or wells. (Generally, 5x105 to 1x106 cells per assay.)
  2. Wash cells by centrifugation in excess 1X PBS to remove methanol. Discard supernatant in appropriate waste container. Repeat if necessary.
  3. Resuspend cells in 100 µl of diluted primary antibody, prepared in Antibody Dilution Buffer at a recommended dilution or as determined via titration.
  4. Incubate for 1 hr at room temperature. Protect from light.
  5. Wash by centrifugation in Antibody Dilution Buffer or 1X PBS. Discard supernatant. Repeat.
  6. Resuspend cells in 200-500 µl of 1X PBS and analyze on flow cytometer.

posted July 2009

revised August 2019

Protocol Id: 407

Specificity / Sensitivity

c-Fos (9F6) Rabbit mAb (PE Conjugate) recognizes endogenous levels of total c-Fos protein. The antibody does not cross-react with other Fos proteins, including FosB, FRA1, or FRA2.

Species Reactivity:

Human, Mouse, Rat

Species predicted to react based on 100% sequence homology:

Hamster, Bovine, Pig

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the amino terminus of human c-Fos protein.

Background

The Fos family of nuclear oncogenes includes c-Fos, FosB, Fos-related antigen 1 (FRA1), and Fos-related antigen 2 (FRA2) (1). While most Fos proteins exist as a single isoform, the FosB protein exists as two isoforms: full-length FosB and a shorter form, FosB2 (Delta FosB), which lacks the carboxy-terminal 101 amino acids (1-3). The expression of Fos proteins is rapidly and transiently induced by a variety of extracellular stimuli including growth factors, cytokines, neurotransmitters, polypeptide hormones, and stress. Fos proteins dimerize with Jun proteins (c-Jun, JunB, and JunD) to form Activator Protein-1 (AP-1), a transcription factor that binds to TRE/AP-1 elements and activates transcription. Fos and Jun proteins contain the leucine-zipper motif that mediates dimerization and an adjacent basic domain that binds to DNA. The various Fos/Jun heterodimers differ in their ability to transactivate AP-1 dependent genes. In addition to increased expression, phosphorylation of Fos proteins by Erk kinases in response to extracellular stimuli may further increase transcriptional activity (4-6). Phosphorylation of c-Fos at Ser32 and Thr232 by Erk5 increases protein stability and nuclear localization (5). Phosphorylation of FRA1 at Ser252 and Ser265 by Erk1/2 increases protein stability and leads to overexpression of FRA1 in cancer cells (6). Following growth factor stimulation, expression of FosB and c-Fos in quiescent fibroblasts is immediate, but very short-lived, with protein levels dissipating after several hours (7). FRA1 and FRA2 expression persists longer, and appreciable levels can be detected in asynchronously growing cells (8). Deregulated expression of c-Fos, FosB, or FRA2 can result in neoplastic cellular transformation; however, Delta FosB lacks the ability to transform cells (2,3).

  1. Tulchinsky, E. (2000) Histol Histopathol 15, 921-8.
  2. Dobrazanski, P. et al. (1991) Mol Cell Biol 11, 5470-8.
  3. Nakabeppu, Y. and Nathans, D. (1991) Cell 64, 751-9.
  4. Rosenberger, S.F. et al. (1999) J Biol Chem 274, 1124-30.
  5. Sasaki, T. et al. (2006) Mol Cell 24, 63-75.
  6. Basbous, J. et al. (2007) Mol Cell Biol 27, 3936-50.
  7. Kovary, K. and Bravo, R. (1991) Mol Cell Biol 11, 2451-9.
  8. Kovary, K. and Bravo, R. (1992) Mol Cell Biol 12, 5015-23.

Pathways & Proteins

Explore pathways + proteins related to this product.

For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.