Buy 3 and get the 4th FREE!* | Learn More >>
8228
Phospho-Histone H2A.X (Ser139) (20E3) Rabbit mAb (Alexa Fluor® 555 Conjugate)
Antibody Conjugates

Phospho-Histone H2A.X (Ser139) (20E3) Rabbit mAb (Alexa Fluor® 555 Conjugate) #8228

Reviews ()
Citations (2)

Supporting Data

REACTIVITY
SENSITIVITY
MW (kDa)
Isotype Rabbit 

Application Key:

  • W-Western
  • IP-Immunoprecipitation
  • IHC-Immunohistochemistry
  • ChIP-Chromatin Immunoprecipitation
  • IF-Immunofluorescence
  • F-Flow Cytometry
  • E-P-ELISA-Peptide

Species Cross-Reactivity Key:

  • H-Human
  • M-Mouse
  • R-Rat
  • Hm-Hamster
  • Mk-Monkey
  • Mi-Mink
  • C-Chicken
  • Dm-D. melanogaster
  • X-Xenopus
  • Z-Zebrafish
  • B-Bovine
  • Dg-Dog
  • Pg-Pig
  • Sc-S. cerevisiae
  • Ce-C. elegans
  • Hr-Horse
  • All-All Species Expected

Product Description

This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 555 fluorescent dye and tested in-house for immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Histone H2A.X (Ser139) (20E3) Rabbit mAb #9718.

Storage:

Supplied in PBS (pH 7.2), less than 0.1% sodium azide and 2 mg/ml BSA. Store at 4°C. Do not aliquot the antibody. Protect from light. Do not freeze.

Specificity / Sensitivity

Phospho-Histone H2A.X (Ser139) (20E3) Rabbit mAb (Alexa Fluor® 555 Conjugate) detects endogenous levels of H2A.X only when phosphorylated at Ser139.

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser139 of human H2A.X.

Background

Histone H2A.X is a variant histone that represents approximately 10% of the total H2A histone proteins in normal human fibroblasts (1). H2A.X is required for checkpoint-mediated cell cycle arrest and DNA repair following double-stranded DNA breaks (1). DNA damage, caused by ionizing radiation, UV-light, or radiomimetic agents, results in rapid phosphorylation of H2A.X at Ser139 by PI3K-like kinases, including ATM, ATR, and DNA-PK (2,3). Within minutes following DNA damage, H2A.X is phosphorylated at Ser139 at sites of DNA damage (4). This very early event in the DNA-damage response is required for recruitment of a multitude of DNA-damage response proteins, including MDC1, NBS1, RAD50, MRE11, 53BP1, and BRCA1 (1). In addition to its role in DNA-damage repair, H2A.X is required for DNA fragmentation during apoptosis and is phosphorylated by various kinases in response to apoptotic signals. H2A.X is phosphorylated at Ser139 by DNA-PK in response to cell death receptor activation, c-Jun N-terminal Kinase (JNK1) in response to UV-A irradiation, and p38 MAPK in response to serum starvation (5-8). H2A.X is constitutively phosphorylated on Tyr142 in undamaged cells by WSTF (Williams-Beuren syndrome transcription factor) (9,10). Upon DNA damage, and concurrent with phosphorylation of Ser139, Tyr142 is dephosphorylated at sites of DNA damage by recruited EYA1 and EYA3 phosphatases (9). While phosphorylation at Ser139 facilitates the recruitment of DNA repair proteins and apoptotic proteins to sites of DNA damage, phosphorylation at Tyr142 appears to determine which set of proteins are recruited. Phosphorylation of H2A.X at Tyr142 inhibits the recruitment of DNA repair proteins and promotes binding of pro-apoptotic factors such as JNK1 (9). Mouse embryonic fibroblasts expressing only mutant H2A.X Y142F, which favors recruitment of DNA repair proteins over apoptotic proteins, show a reduced apoptotic response to ionizing radiation (9). Thus, it appears that the balance of H2A.X Tyr142 phosphorylation and dephosphorylation provides a switch mechanism to determine cell fate after DNA damage.

  1. Yuan, J. et al. (2010) FEBS Lett 584, 3717-24.
  2. Rogakou, E.P. et al. (1998) J. Biol. Chem. 273, 5858-5868.
  3. Burma, S. et al. (2001) J. Biol. Chem. 276, 42462-42467.
  4. Rogakou, E.P. et al. (1999) J. Cell Biol. 146, 905-916.
  5. Mukherjee, B. et al. (2006) DNA Repair (Amst) 5, 575-90.
  6. Solier, S. et al. (2009) Mol Cell Biol 29, 68-82.
  7. Lu, C. et al. (2006) Mol Cell 23, 121-32.
  8. Lu, C. et al. (2008) FEBS Lett 582, 2703-8.
  9. Cook, P.J. et al. (2009) Nature 458, 591-6.
  10. Xiao, A. et al. (2009) Nature 457, 57-62.

Pathways & Proteins

Explore pathways + proteins related to this product.

For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
The Alexa Fluor dye antibody conjugates in this product are sold under license from Life Technologies Corporation for research use only, except for use in combination with DNA microarrays. The Alexa Fluor® dyes (except for Alexa Fluor® 430 dye) are covered by pending and issued patents. Alexa Fluor® is a registered trademark of Molecular Probes, Inc.

To Purchase # 8228