View Featured Offers >>
6886
PhosphoPlus® Histone H3 (Ser10) In-Cell Duet (ICW Compatible)
Primary Antibodies
Antibody Cocktail Kit

PhosphoPlus® Histone H3 (Ser10) In-Cell Duet (ICW Compatible) #6886

Citations (0)
Analysis of HCC827 cells exposed to 1 μM gefitinib for the indicated times. The phosphorylation status of histone H3 and expression level of β-actin were measured simultaneously using the PhosphoPlus® Histone H3 (Ser10) In-Cell Duet (ICW Compatible). With increased exposure to gefitinib, a significant decrease (~3-8-fold) in phospho-histone H3 signal (green) was observed. Levels of β-actin (red) decreased after 24 hrs of exposure to gefitinib due to cell death. Data and images were generated on the LI-COR® Biosciences Odyssey® Infrared Imaging System.
Inquiry Info.# 6886

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 μg/ml BSA, and 50% glycerol. Store at –20°C. Do not aliquot either cocktail.

Product Description

PhosphoPlus® Histone H3 (Ser10) In-Cell Duet from Cell Signaling Technology (CST) provides an easy method to assess protein activation status using a multi-well plate scanner with near infrared detection capabilities, such as the LI-COR® Biosciences Odyssey® Infrared Imaging System. This kit contains a pre-optimized activation state and total protein antibody cocktail, selected based on superior performance. Phosphorylated and total protein are detected simultaneously in the same well, allowing levels of phosphorylated protein to be normalized to total protein. A near infrared detection cocktail is also included.
MW (kDa) n/a

Specificity / Sensitivity

Phospho-Histone H3 (Ser10) antibody recognizes endogenous levels of histone H3 only when phosphorylated at Ser10. This antibody does not cross-react with other phosphorylated histones or with acetylated histones. β-Actin antibody recognizes endogenous levels of total β-actin protein.

Source / Purification

Monoclonal antibodies are produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser10 of human histone H3 protein or by immunizing animals with a synthetic peptide corresponding to residues near the amino terminus of human β-actin protein.

Background

Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, on gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation of Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation of H3 Thr3 in prophase and its dephosphorylation during anaphase (11).

Pathways

Explore pathways related to this product.

Limited Uses

Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.

Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.

For Research Use Only. Not for Use in Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
PhosphoPlus is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.