Buy 3 Get a 4th Free* | Learn More >>
12651
PDGF Receptor Activation Antibody Sampler Kit

PDGF Receptor Activation Antibody Sampler Kit #12651

Western Blotting Image 1

Western blot analysis of extracts of NIH/3T3 cells, untreated or stimulated with Platelet-Derived Growth Factor (PDGF) #9909, using Phospho-PDGF Receptor-β (Tyr751) (C63G6) Rabbit mAb (upper) or PDGF Receptor-β (2B3) Mouse mAb #3175 (lower).

Learn more about how we get our images
Western Blotting Image 2

Western blot analysis of extracts from various cell lines, using PDGF Receptor β (28E1) Rabbit mAb.

Learn more about how we get our images
Western Blotting Image 3

Western blot analysis of extracts from C6 and NIH/3T3 cells, starved for 18 hours and either untreated or PDGF-treated (50ng/ml, 20 minutes), using Phospho-SHP-2 (Tyr542) Antibody (upper) or control SHP-2 Antibody #3752 (lower).

Learn more about how we get our images
Western Blotting Image 4

Western blot analysis of extracts from various cell lines using SHP-2 (D50F2) Rabbit mAb.

Learn more about how we get our images
Western Blotting Image 5

Western blot analysis of extracts from PC-3 cells, untreated or LY294002/wortmannin-treated, and NIH/3T3 cells, serum-starved or PDGF-treated, using Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (upper) or Akt (pan) (C67E7) Rabbit mAb #4691 (lower).

Learn more about how we get our images
Western Blotting Image 6

Western blot analysis of recombinant Akt1, Akt2 and Akt3 proteins, and extracts from various cell lines, using Akt (pan) (C67E7) Rabbit mAb.

Learn more about how we get our images
Western Blotting Image 7

Western blot analysis of extracts from COS cells, untreated or treated with either U0126 #9903 (10 µM for 1h) or TPA #4174 (200 nM for 10 m), using Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb #4370 and p44/42 MAPK (Erk1/2) (3A7) Mouse mAb #9107.

Learn more about how we get our images
Western Blotting Image 8

Western blot analysis of extracts from HeLa, NIH/3T3 and C6 cells, using p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb.

Learn more about how we get our images
Western Blotting Image 9

After the primary antibody is bound to the target protein, a complex with HRP-linked secondary antibody is formed. The LumiGLO® is added and emits light during enzyme catalyzed decomposition.

Learn more about how we get our images
IHC-P (paraffin) Image 10

Immunohistochemical analysis of paraffin-embedded human colon carcinoma using PDGF Receptor β (28E1) Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 11

Immunohistochemical analysis of paraffin-embedded MDA-MB-468 xenograft using Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (left) or PTEN (138G6) Rabbit mAb #9559 (right). Note the presence of P-Akt staining in the PTEN deficient MDA-MB-468 cells.

Learn more about how we get our images
IHC-P (paraffin) Image 12

Immunohistochemical analysis of paraffin-embedded human melanoma using Akt (pan) (C67E7) Rabbit mAb.

Learn more about how we get our images
Western Blotting Image 13

Western blot analysis of extracts from 293, NIH/3T3 and C6 cells, treated with λ phosphatase or TPA #4174 as indicated, using Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb (upper), or p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb #4695 (lower).

Learn more about how we get our images
Western Blotting Image 14

Western blot analysis of extracts from Hek 293 cells, transfected with 100 nM SignalSilence® Control siRNA (Fluorescein Conjugate) #6201 (-) or SignalSilence® p44/42 MAPK (Erk1/2) siRNA (+), using p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb #4695 and α-Tubulin (11H10) Rabbit mAb #2125. The p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb confirms silencing of p44/42 expression and α-Tubulin (11H10) Rabbit mAb is used to control for loading and specificity of p44/42 MAPK (Erk1/2) siRNA.

Learn more about how we get our images
IHC-P (paraffin) Image 15

Immunohistochemical analysis of paraffin-embedded human glioblastoma using PDGF Receptor β (28E1) Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 16

Immunohistochemical analysis of paraffin-embedded human breast carcinoma comparing SignalStain® Antibody Diluent #8112 (left) to TBST/5% normal goat serum (right) using Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060.

Learn more about how we get our images
IHC-P (paraffin) Image 17

Immunohistochemical analysis of paraffin-embedded human breast carcinoma using Akt (pan) (C67E7) Rabbit mAb in the presence of control peptide (left) or Akt (pan) Blocking Peptide #1085 (right).

Learn more about how we get our images
IHC-P (paraffin) Image 18

Immunohistochemical analysis of paraffin-embedded human breast carcinoma using Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 19

Immunohistochemical analysis of paraffin-embedded human breast carcinoma, showing cytoplasmic and nuclear localization, using p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 20

Immunohistochemical analysis of paraffin-embedded U-87MG cells, showing membrane localization, using PDGF Receptor β (28E1) Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 21

Immunohistochemical analysis of paraffin-embedded human breast carcinoma using Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 22

Immunohistochemical analysis using Akt (pan) (C67E7) Rabbit mAb on SignalSlide (TM) Phospho-Akt (Ser473) IHC Controls #8101 (paraffin-embedded LNCaP cells, untreated (left) or LY294002-treated (right)).

Learn more about how we get our images
IHC-P (paraffin) Image 23

Immunohistochemical analysis of paraffin-embedded human lung carcinoma, untreated (left) or λ phosphatase-treated (right), using Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 24

Immunohistochemical analysis of paraffin-embedded human colon carcinoma, using p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb.

Learn more about how we get our images
IHC-F (frozen) Image 25

Immunohistochemical analysis of frozen U-87MG xenograft using PDGF Receptor beta (28E1) Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 26

Immunohistochemical analysis using Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb on SignalSlide® Phospho-Akt (Ser473) IHC Controls #8101 (paraffin-embedded LNCaP cells, untreated (left) or LY294002-treated (right)).

Learn more about how we get our images
Flow Cytometry Image 27

Flow cytometric analysis of Jurkat cells using Akt (pan) (C67E7) Rabbit mAb (blue) compared to a nonspecific negative control antibody (red).

Learn more about how we get our images
IHC-P (paraffin) Image 28

Immunohistochemical analysis using Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb on SignalSlide™ Phospho-p44/42 MAPK (Thr202/Tyr204) IHC Controls #8103 (paraffin-embedded NIH/3T3 cells, treated with U0126 #9903 (left) or TPA #4174 (right).

Learn more about how we get our images
IHC-P (paraffin) Image 29

Immunohistochemical analysis of paraffin-embedded human breast carcinoma, using p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb in the presence of control peptide (left) or #1240 p44/42 MAPK (Erk1/2) Blocking Peptide (#4695 Specific) (right).

Learn more about how we get our images
IF-IC Image 30

Confocal immunofluorescent analysis of NIH/3T3 cells, serum-starved (left) or PDGF-treated (right), using PDGF Receptor beta (28E1) Rabbit mAb (green). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).

Learn more about how we get our images
IHC-P (paraffin) Image 31

Immunohistochemical analysis of paraffin-embedded human lung carcinoma using Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb.

Learn more about how we get our images
IF-IC Image 32

Confocal immunofluorescent analysis of C2C12 cells, LY294002-treated (left) or insulin-treated (right), using Akt (pan) (C67E7) Rabbit mAb (green). Actin filaments have been labeled with Alexa Fluor® 555 phalloidin (red). Blue pseudocolor = DRAQ5™ (fluorescent DNA dye).

Learn more about how we get our images
Flow Cytometry Image 33

Flow cytometric analysis of Jurkat cells, treated with U0126 (10uM, 2 hrs; blue) or treated with TPA #4174 (200nM, 30 min; green) using Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb (solid lines) or concentration-matched Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (dashed lines). Anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 488 Conjugate) #4412.

Learn more about how we get our images
Flow Cytometry Image 34

Flow cytometric analysis of Jurkat cells, U0126-treated (blue) or PMA-treated (green), using p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb compared to a nonspecific negative control antibody (red).

Learn more about how we get our images
IHC-P (paraffin) Image 35

Immunohistochemical analysis of paraffin-embedded PTEN heterozygous mutant mouse endometrium using Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb. (Tissue section courtesy of Dr. Sabina Signoretti, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.)

Learn more about how we get our images
IF-IC Image 36

Confocal immunofluorescent analysis of Drosophila egg chambers, untreated (top) or λ phosphatase-treated (bottom), using Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb #4370 (green) and S6 Ribosomal Protein (54D2) Mouse mAb #2317 (red). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).

Learn more about how we get our images
IF-IC Image 37

Confocal immunofluorescent analysis of NIH/3T3 cells, treated with either U0126 (MEK1/2 Inhibitor) #9903 (left) or PDGF (right), using p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb (green). Actin filaments have been labeled with DY-554 phalloidin (red).

Learn more about how we get our images
IHC-P (paraffin) Image 38

Immunohistochemical analysis of paraffin-embedded U-87MG xenograft, untreated (left) or lambda phosphatase-treated (right), using Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb.

Learn more about how we get our images
IF-IC Image 39

Confocal immunofluorescent analysis of HT1080 cells, starved overnight then treated with U0126 #9903 (10 uM, 2 h; left) or PDBu (Phorbol 12,13-Dibutyrate) #12808 (100 nM, 15 m; right) using Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb #4370 (green) and β-Actin (8H10D10) Mouse mAb #3700 (red). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).

Learn more about how we get our images
IHC-F (frozen) Image 40

Immunohistochemical analysis of frozen SKOV3 xenograft using Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb.

Learn more about how we get our images
Flow Cytometry Image 41

Flow cytometric analysis of Jurkat cells, untreated (green) or treated with LY294002 #9901, wortmannin #9951 and U0126 #9903 (blue), using Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb compared to a nonspecific negative control antibody (red).

Learn more about how we get our images
IF-IC Image 42

Confocal immunofluorescent analysis of C2C12 cells, LY294002-treated (left) or insulin-treated (right), using Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (green). Actin filaments have been labeled with Alexa Fluor® 555 phalloidin #8953 (red). Blue pseudocolor = DRAQ5®#4084 (fluorescent DNA dye).

Learn more about how we get our images
Product Includes Quantity Applications Reactivity MW(kDa) Isotype
Phospho-PDGF Receptor β (Tyr751) (C63G6) Rabbit mAb 4549 20 µl
  • WB
H M 190 Rabbit IgG
PDGF Receptor β (28E1) Rabbit mAb 3169 20 µl
  • WB
  • IP
  • IHC
  • IF
H M R 190 Rabbit IgG
Phospho-SHP-2 (Tyr542) Antibody 3751 20 µl
  • WB
  • IP
H M R 72 Rabbit 
SHP-2 (D50F2) Rabbit mAb 3397 20 µl
  • WB
  • IP
H M R Mk 72 Rabbit IgG
Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb 4060 20 µl
  • WB
  • IP
  • IHC
  • IF
  • F
H M R Hm Mk Dm Z B 60 Rabbit IgG
Akt (pan) (C67E7) Rabbit mAb 4691 20 µl
  • WB
  • IP
  • IHC
  • IF
  • F
H M R Mk Dm 60 Rabbit IgG
Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb 4370 20 µl
  • WB
  • IP
  • IHC
  • IF
  • F
H M R Hm Mk Mi Dm Z B Dg Pg Sc 44, 42 Rabbit IgG
p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb 4695 20 µl
  • WB
  • IP
  • IHC
  • IF
  • F
H M R Hm Mk Mi Dm Z B Dg Pg Ce 42, 44 Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl
  • WB
Goat 

The PDGF Receptor Activation Antibody Sampler Kit provides an economical means to evaluate the activation status of multiple members of the PDGF receptor pathway, including SHP-2, Akt, and p44/42 MAPK (Erk1/2). The kit includes enough antibody to perform two western blot experiments per primary antibody.

Unless otherwise indicated, each antibody in the PDGF Receptor Activation Antibody Sampler Kit recognizes endogenous levels of its specific target. Activation state antibodies detect their intended targets only when phosphorylated at the indicated site. Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb detects endogenous levels of p44 and p42 MAP kinase when dually phosphorylated at Thr202 and Tyr204 of Erk1 (Thr185/Tyr187 of Erk2) and singly phosphorylated at Thr202. Phospho-PDGF Receptor β (Tyr751) (C63G6) Rabbit mAb may cross-react with activated PDGF receptor α and other protein tyrosine kinases when highly overexpressed. PDGF Receptor β (28E1) Rabbit mAb may cross-react with PDGF receptor α when highly overexpressed. Phospho-SHP-2 (Tyr542) Antibody may cross-react with activated receptor tyrosine kinases.

Polyclonal antibodies are produced by immunizing animals with synthetic phosphopeptides corresponding to residues surrounding Tyr542 of human SHP-2 protein. Polyclonal antibodies are purified by protein A and peptide affinity chromatography. Monoclonal activation state antibodies are produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser473 of human Akt, Thr202/Tyr204 of human p44 MAP kinase, or Tyr751 of human PDGF receptor β. Monoclonal control antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues in the carboxy-terminal sequence of mouse Akt, the carboxy terminus of rat p44 MAP kinase, the carboxy-terminus of human SHP-2, or a fusion containing a carboxy-terminal fragment of human PDGF receptor β protein.

Platelet derived growth factor (PDGF) family proteins form dimers (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind receptor tyrosine kinases PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ) in a specific pattern. PDGFRβ homodimers bind PDGF BB and DD homodimers and the PDGF AB heterodimer. Heteromeric receptor PDGF α/β binds PDGF B, C, and D homodimers and the PDGF AB heterodimer (1). Ligand binding induces PDGF receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. Activated PDGF receptors initiate signaling pathways that control cell growth, actin reorganization, migration, and differentiation (2). PDGFRβ kinase-insert region residue Tyr751 forms the PI3 kinase docking site, and phosphorylation of PDGFRβ at this site inhibits the association between the SH2 domain of the PI3 kinase p85 subunit and PDGFRβ (3,4).

SHP-2 (PTPN11) is a nonreceptor protein tyrosine phosphatase that participates in signaling pathways that control cell growth, differentiation, migration, and death (5). Activation of SHP-2 and its association with Gab1 is critical for sustained Erk activation downstream of growth factor receptors and cytokines (6). Phosphorylation of SHP-2 at Tyr542 and Tyr580 in response to growth factor receptor activation is thought to relieve basal inhibition and stimulate SHP-2 tyrosine phosphatase activity (7,8).

Insulin and various growth/survival factors activate Akt, a kinase that acts in a wortmannin-sensitive pathway involving PI3 kinase to help control survival and apoptosis (9-11). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (12) and by phosphorylation within the carboxy terminus at Ser473.

The p44/42 MAPK (Erk1/2) signaling pathway is activated in response to extracellular stimuli including mitogens, growth factors, and cytokines (13-15). Research suggests that this pathway is an important target in cancer diagnosis and treatment (16). External stimuli lead to activation of a kinase cascade that results in the activation of p44 and p42 by a MAP kinase. MEK1 and MEK2 activate p44 and p42 through phosphorylation of activation loop residues Thr202/Tyr204 and Thr185/Tyr187, respectively.

Clinical studies describe PDGF expression in a number of different solid tumors, from glioblastomas to prostate carcinomas. The biological role of PDGF signaling in these tumors varies from autocrine stimulation of cancer cell growth to more subtle paracrine interactions involving adjacent stroma and even angiogenesis. Targeting PDGF signaling may be an effective way for tumor treatment (17).

  1. Deuel, T.F. et al. (1988) Biofactors 1, 213-7.
  2. Qu, C.K. (2000) Cell Res 10, 279-88.
  3. Franke, T.F. et al. (1997) Cell 88, 435-7.
  4. Roux, P.P. and Blenis, J. (2004) Microbiol Mol Biol Rev 68, 320-44.
  5. Maroun, C.R. et al. (2000) Mol Cell Biol 20, 8513-25.
  6. Burgering, B.M. and Coffer, P.J. (1995) Nature 376, 599-602.
  7. Baccarini, M. (2005) FEBS Lett 579, 3271-7.
  8. Betsholtz, C. et al. (2001) Bioessays 23, 494-507.
  9. Franke, T.F. et al. (1995) Cell 81, 727-36.
  10. Meloche, S. and Pouysségur, J. (2007) Oncogene 26, 3227-39.
  11. Bennett, A.M. et al. (1994) Proc Natl Acad Sci U S A 91, 7335-9.
  12. Alessi, D.R. et al. (1996) EMBO J 15, 6541-51.
  13. Roberts, P.J. and Der, C.J. (2007) Oncogene 26, 3291-310.
  14. Ostman, A. and Heldin, C.H. (2001) Adv Cancer Res 80, 1-38.
  15. Lu, W. et al. (2001) Mol Cell 8, 759-69.
  16. Ramalingam, K. et al. (1995) Bioorg Med Chem 3, 1263-72.
  17. George, D. (2001) Semin Oncol 28, 27-33.
Entrez-Gene Id
207 , 208 , 10000 , 5595 , 5594 , 5159 , 5781
Swiss-Prot Acc.
P31749 , P31751 , Q9Y243 , P27361 , P28482 , P09619 , Q06124
For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
XP is a registered trademark of Cell Signaling Technology, Inc.

Upstream / Downstream

pathwayImage

Explore pathways related to this product.