Interested in promotions? | Click here >>
Phospho-SREBP-1c (Ser372) Antibody
Primary Antibodies
Polyclonal Antibody

Phospho-SREBP-1c (Ser372) Antibody #9874

Citations (11)
No image available

Supporting Data

MW (kDa) 150

Application Key:

  • W-Western
  • IP-Immunoprecipitation
  • IHC-Immunohistochemistry
  • ChIP-Chromatin Immunoprecipitation
  • IF-Immunofluorescence
  • F-Flow Cytometry
  • E-P-ELISA-Peptide

Species Cross-Reactivity Key:

  • H-Human
  • M-Mouse
  • R-Rat
  • Hm-Hamster
  • Mk-Monkey
  • Mi-Mink
  • C-Chicken
  • Dm-D. melanogaster
  • X-Xenopus
  • Z-Zebrafish
  • B-Bovine
  • Dg-Dog
  • Pg-Pig
  • Sc-S. cerevisiae
  • Ce-C. elegans
  • Hr-Horse
  • All-All Species Expected


Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

Specificity / Sensitivity

Phospho-SREBP-1c (Ser372) Antibody recognizes transfected levels of SREBP-1c protein only when phosphorylated at Ser372.

Species predicted to react based on 100% sequence homology:

Mouse, Rat

Source / Purification

Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Ser372 of human SREBP-1c protein. Antibodies are purified by protein A and peptide affinity chromatography.


Sterol regulatory element–binding proteins (SREBPs) are basic helix-loop-helix–leucine zipper transcription factors (1,2). Inactive precursor forms of SREBPs are bound to endoplasmic reticulum (ER) membranes (1,2). When cells are starved for cholesterol, SREBPs move from the ER to the Golgi apparatus with the help of SREBP cleavage–activating protein (SCAP) (1,2). In the Golgi apparatus, precursor SREBPs are then cleaved by two proteases, Site-1 protease (S1P) and Site-2 protease (S2P) (1,2). The released N-terminal domains enter the nucleus and bind to sterol response elements in the promoters of a variety of genes responsible for the synthesis of cholesterol (1,2). SREBPs also activate the expression of genes involved in the synthesis of fatty acids and lipids (1,2). Among the isoforms of SREBPs, SREBP-1c activates all lipogenic genes in the liver (3). SREBP-1c has been implicated to contribute to the development of hepatic steatosis in the rodent model of insulin resistance and obesity (3). Recent studies have shown that AMPK interacts with and directly phosphorylates SREBP-1c and SREBP-2 (4). Phosphorylation of SREBP-1c at Ser372 by AMPK, which is stimulated by polyphenols and metformin, inhibits the proteolytic cleavage of SREBP-1c and therefore suppresses the expression of its target genes in the liver (4). This process leads to the reduction of lipid synthesis and accumulation in the liver (4).

  1. Brown, M.S. and Goldstein, J.L. (1997) Cell 89, 331-40.
  2. Horton, J.D. et al. (2002) J Clin Invest 109, 1125-31.
  3. Browning, J.D. and Horton, J.D. (2004) J Clin Invest 114, 147-52.
  4. Li, Y. et al. (2011) Cell Metab 13, 376-88.

Pathways & Proteins

Explore pathways + proteins related to this product.

Limited Uses

Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.

Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST's products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST's Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.

For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
To Purchase # 9874