Interested in promotions? | Click here >>
9960
PKC Isoform Antibody Sampler Kit
Primary Antibodies
Antibody Sampler Kit

PKC Isoform Antibody Sampler Kit #9960

Reviews ()
Citations (0)
PKC Isoform Antibody Sampler Kit: Image 1

Western blot analysis of extracts from various cell lines using PKCδ (D10E2) Rabbit mAb #9616.

PKC Isoform Antibody Sampler Kit: Image 2

Flow cytometric analysis of HeLa cells using PKCα Antibody (solid line) compared to concentration-matched Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (dashed line). Anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 488 Conjugate) #4412 was used as a secondary antibody.

PKC Isoform Antibody Sampler Kit: Image 3

Western blot analysis of extracts of HeLa, COS, C6 and NIH/3T3 cells, using PKCα Antibody.

PKC Isoform Antibody Sampler Kit: Image 4

Western blot analysis of extracts from 293, NBT-II, PC12 and COS cells, using PKCζ (C24E6) Rabbit mAb.

PKC Isoform Antibody Sampler Kit: Image 5

Western blot analysis of extracts from various cell lines using PKD/PKCμ (D4J1N) Rabbit mAb (upper) or β-Actin (D6A8) Rabbit mAb #8457 (lower).

PKC Isoform Antibody Sampler Kit: Image 6

Western blot analysis of HeLa cell lysate and HeLa PKCδ KO lysate with PKCδ (D10E2) Rabbit mAb and β-Actin (D6A8) Rabbit mAb #8457.

PKC Isoform Antibody Sampler Kit: Image 7

After the primary antibody is bound to the target protein, a complex with HRP-linked secondary antibody is formed. The LumiGLO® is added and emits light during enzyme catalyzed decomposition.

PKC Isoform Antibody Sampler Kit: Image 8

Confocal immunofluorescent images of C6 cells serum-starved (left) or TPA #9905 treated (center), labeled with PKCα Antibody (green) compared to an isotype control (right). Actin filaments have been labeled with Alexa Fluor® 555 phalloidin (red). Blue pseudocolor = DRAQ5™ (fluorescent DNA dye).

PKC Isoform Antibody Sampler Kit: Image 9

Western blot analysis of extracts of Baculovirus expressed PKC isoforms demonstrating the isoform-specificity of PKCα Antibody.

PKC Isoform Antibody Sampler Kit: Image 10

Western blot analysis of bacterially expressed, GST-tagged, purified PKC isoforms, using PKCδ (D10E2) Rabbit mAb (upper) or GST (91G1) Rabbit mAb #2625 (lower), demonstrating specificity for PKCδ.

PKC Isoform Antibody Sampler Kit: Image 11

Western blot analysis of extracts from various cell lines using PKCδ (D10E2) Rabbit mAb.

To Purchase # 9960T
Product # Size Price
9960T
1 Kit  (4 x 20 µl) $ 327

Product Includes Quantity Applications Reactivity MW(kDa) Isotype
PKCα Antibody 2056 20 µl
  • WB
  • IP
  • IF
  • F
H Mk M R 80 Rabbit 
PKCζ (C24E6) Rabbit mAb 9368 20 µl
  • WB
H Mk M R 78 Rabbit IgG
PKD/PKCμ (D4J1N) Rabbit mAb 90039 20 µl
  • WB
  • IP
H Mk 115 Rabbit IgG
PKCδ (D10E2) Rabbit mAb 9616 20 µl
  • WB
  • IP
H Mk M R 78 Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl
  • WB
Goat 

Product Description

PKC Antibody Sampler Kit contains reagents to examine the total protein levels of various PKC isoforms. The kit contains enough primary and secondary antibodies to perform two Western blots per primary antibody.

Specificity / Sensitivity

All antibodies in this kit detect endogenous levels of total protein from their respective targets. All antibodies only recognize their specified isoform and do not cross-react with other PKC isoforms.

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to human PKCζ and to residues surrounding Arg216 of human PKCδ protein and near the carboxy terminus of human PKD (PKCμ). Polyclonal antibodies are produced by immunizing animals with synthetic peptides corresponding to the sequence of the human protein PKCα. Antibodies are purified by protein A and peptide affinity chromatography.

Background

Activation of protein kinase C (PKC) is one of the earliest events in a cascade that controls a variety of cellular responses, including secretion, gene expression, proliferation, and muscle contraction (1,2). PKC isoforms belong to three groups based on calcium dependency and activators. Classical PKCs are calcium-dependent via their C2 domains and are activated by phosphatidylserine (PS), diacylglycerol (DAG), and phorbol esters (TPA, PMA) through their cysteine-rich C1 domains. Both novel and atypical PKCs are calcium-independent, but only novel PKCs are activated by PS, DAG, and phorbol esters (3-5). Members of these three PKC groups contain a pseudo-substrate or autoinhibitory domain that binds to substrate-binding sites in the catalytic domain to prevent activation in the absence of cofactors or activators. Control of PKC activity is regulated through three distinct phosphorylation events. Phosphorylation occurs in vivo at Thr500 in the activation loop, at Thr641 through autophosphorylation, and at the carboxy-terminal hydrophobic site Ser660 (2). Atypical PKC isoforms lack hydrophobic region phosphorylation, which correlates with the presence of glutamic acid rather than the serine or threonine residues found in more typical PKC isoforms. The enzyme PDK1 or a close relative is responsible for PKC activation. A recent addition to the PKC superfamily is PKCμ (PKD), which is regulated by DAG and TPA through its C1 domain. PKD is distinguished by the presence of a PH domain and by its unique substrate recognition and Golgi localization (6). PKC-related kinases (PRK) lack the C1 domain and do not respond to DAG or phorbol esters. Phosphatidylinositol lipids activate PRKs, and small Rho-family GTPases bind to the homology region 1 (HR1) to regulate PRK kinase activity (7).

  1. Nishizuka, Y. (1984) Nature 308, 693-8.
  2. Keranen, L.M. et al. (1995) Curr Biol 5, 1394-403.
  3. Mellor, H. and Parker, P.J. (1998) Biochem J 332 ( Pt 2), 281-92.
  4. Ron, D. and Kazanietz, M.G. (1999) FASEB J 13, 1658-76.
  5. Moscat, J. and Diaz-Meco, M.T. (2000) EMBO Rep 1, 399-403.
  6. Baron, C.L. and Malhotra, V. (2002) Science 295, 325-8.
  7. Flynn, P. et al. (2000) J Biol Chem 275, 11064-70.

Limited Uses

Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.

Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST's products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST's Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.

For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.