Cat. # | Size | Qty. | Price |
---|---|---|---|
16815T | 1 Kit (8 x 20 microliters) |
|
$ 645 |
Product Includes | Quantity | Applications | Reactivity | MW(kDa) | Isotype |
---|---|---|---|---|---|
GPX1 (C8C4) Rabbit mAb 3286 | 20 µl |
|
H | 22 | Rabbit IgG |
GPX4 Antibody 52455 | 20 µl |
|
H M Mk | 20, 22 | Rabbit |
Thioredoxin 1 (C63C6) Rabbit mAb 2429 | 20 µl |
|
H M R | 12 | Rabbit IgG |
Thioredoxin 2 (D1C9L) Rabbit mAb 14907 | 20 µl |
|
H M R Hm Mk | 13 | Rabbit IgG |
TRXR1 (D1T3D) Rabbit mAb 15140 | 20 µl |
|
H M R Hm Mk | 55 | Rabbit IgG |
TXNIP (D5F3E) Rabbit mAb 14715 | 20 µl |
|
H M R Mk | 55 | Rabbit IgG |
Prdx1 (D5G12) Rabbit mAb 8499 | 20 µl |
|
H M R Mk | 21 | Rabbit IgG |
Phospho-Prdx1 (Tyr194) (D1T9C) Rabbit mAb 14041 | 20 µl |
|
H | 21 | Rabbit IgG |
Anti-rabbit IgG, HRP-linked Antibody 7074 | 100 µl |
|
Rab | Goat |
Product Information
GPX4 Antibody is produced by immunizing a rabbit with a synthetic peptide corresponding to residues near the carboxy terminus of human GPX4 protein. The antibody is purified by peptide affinity chromatography. Monoclonal antibodies are produced by immunizing rabbits with synthetic peptides corresponding to residues of human GPX1 protein, residues surrounding Ala9 of human thioredoxin 1 protein, Leu100 of human thioredoxin 2 protein, Gly412 of human TRXR1 protein, Val337 of human TXNIP protein, and Arg110 of human Prdx1 protein. Phospho-Prdx1 (Tyr194) (D1T9C) Rabbit mAb is produced by immunizing a rabbit with a synthetic phosphopeptide corresponding to residues surrounding Tyr194 of human Prdx1 protein.
Glutathione peroxidase 1 (GPX1) is a cytosolic selenoprotein which reduces hydrogen peroxide to water (1). GPX1 is the most abundant and ubiquitous among the five GPX isoforms identified so far (2). It is an important component in the anti-oxidative defense in cells and is associated with a variety of disease conditions, such as colon cancer (3), coronary artery disease (4), and insulin resistance (1). The selenoprotein glutathione peroxidase 4 (GPX4) is a master regulator of ferroptosis, a form of programmed cell death induced by the iron-dependent lipid peroxidation (5,6). GPX4 converts lipid hydroperoxides to non-toxic lipid alcohols, therefore preventing ferroptosis (6). Research studies show that selenium enhances GPX4 expression and inhibits ferroptotic death to protect neurons (7). In addition, some therapy-resistant cancer cells depend on GPX4 to survive. Loss of GPX4 leads to ferroptosis and thus prevents tumor relapse in mice (8). Furthermore, redox homeostasis mediated by GPX4 is essential for the activation of the cytosolic DNA-sensing cGAS-STING pathway and initiation of the subsequent innate immune response (9). Thioredoxin is a small redox protein found in many eukaryotes and prokaryotes. A pair of cysteines within a highly conserved, active site sequence can be oxidized to form a disulfide bond that is then reduced by thioredoxin reductase (10). Multiple forms of thioredoxin have been identified, including cytosolic thioredoxin 1 (TRX1) and mitochondrial thioredoxin 2 (TRX2). Thioredoxin participates in many cellular processes, including redox signaling, response to oxidative stress, and protein reduction (10). A potential role of thioredoxin in human disorders such as cancer, aging, and heart disease is currently under investigation (11). Thioredoxin can play a key role in cancer progression because it acts as a negative regulator of the proapoptotic kinase ASK1 (12). Changes in thioredoxin expression have been associated with meningococcal septic shock and acute lung injury (13,14). TRXR1 (thioredoxin reductase 1) is a selenocysteine-containing protein that is involved in redox homeostasis (15-20). Its canonical target is thioredoxin, another redox protein (15). Together, they are involved in many functions such as antioxidant regulation (17-20), cell proliferation (16,17,19), DNA replication (16,17), and transcription (17,19). TRXR1 is also capable of reducing a wide array of cellular proteins (15,17). Selenium deficiency, either by diet modification (16,20) or introduction of methylmercury (18), hinders proper expression and function of TRXR1. It is possible that this effect, which results in a higher oxidative state, is a result of the selenocysteine codon (UGA) being read as a STOP codon in the absence of adequate selenium (18). The functions of TRXR1 in cell proliferation and antioxidant defense make it a potential therapeutic target. The ubiquitously expressed thioredoxin-interacting protein (TXNIP) binds and inhibits thioredoxin to regulate cellular redox state (21-23). Research studies demonstrate that hyperglycemia induces TXNIP expression and increases cellular oxidative stress (21). In addition, these studies show that TXNIP reduces glucose uptake directly by binding the glucose transporter Glut1 to stimulate receptor internalization or indirectly by reducing Glut1 mRNA levels (23). Additional studies indicate that TXNIP plays a role in the regulation of insulin mRNA transcription (24). Microarray analyses indicate that TXNIP acts downstream of PPARγ and is a putative tumor suppressor that may control thyroid cancer cell progression (25). In addition, the TXNIP protein may be a potential therapeutic target for the treatment of type 2 diabetes and some disorders related to ER-stress (26). Prdx1 belongs to a family of non-seleno peroxidases that function as H2O2 scavengers. The transient phosphorylation of Prdx1 at Tyr194 leads to inactivation of Prdx1 (27).
Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.
Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.