Buy 3 Get a 4th Free* | Learn More >>
13416
PTMScan® Acetyl-Lysine Motif [Ac-K] Kit

PTMScan® Acetyl-Lysine Motif [Ac-K] Kit #13416

Chart Image 1

The chart shows the relative category distribution of proteins with acetylated lysine residues derived from peptides identified from an AcetylScan® LC-MS/MS experiment of mouse liver tissue using PTMScan® Acetyl-Lysine Motif [Ac-K] Immunoaffinity Beads.

Learn more about how we get our images
Motif Logo Image 2

The Motif Logo was generated from an AcetylScan® LC-MS/MS experiment using 2549 nonredundant tryptic peptides derived from mouse liver tissue immunoprecipitated with PTMScan® Acetyl-Lysine Motif [Ac-K] Immunoaffinity Beads. The logo represents the relative frequency of amino acids in each position surrounding the central acetylated lysine residue within this data set.

Learn more about how we get our images
Product Includes Cap Color Volume (with Count)
PTMScan® Acetyl-Lysine Motif [Ac-K] Immunoaffinity Beads Blue 10 x 80 µl
PTMScan® IAP Buffer (10X) 9993 White 10 x 600 µl
PTMScan® Limited Use License 1 x  license

Cells are lysed in a urea-containing buffer, cellular proteins are digested by proteases, and the resulting peptides are purified by reversed-phase solid-phase extraction. Peptides are then subjected to immunoaffinity purification using a PTMScan® Motif Antibody conjugated to protein A agarose beads. Unbound peptides are removed through washing, and the captured PTM-containing peptides are eluted with dilute acid. Reversed-phase purification is performed on microtips to desalt and separate peptides from antibody prior to concentrating the enriched peptides for LC-MS/MS analysis. CST recommends the use of PTMScan® IAP Buffer #9993 included in the kit. A detailed protocol and Limited Use License allowing the use of the patented PTMScan® method are included with the kit.

Storage:

Antibody beads supplied in IAP buffer containing 50% glycerol. Store at -20°C. Do not aliquot the antibody.

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1). For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/common/content/content.jsp?id=ptmscan-services.

Acetylation of lysine, like phosphorylation of serine, threonine or tyrosine, is an important reversible modification controlling protein activity. The conserved amino-terminal domains of the four core histones (H2A, H2B, H3, and H4) contain lysines that are acetylated by histone acetyltransferases (HATs) and deacetylated by histone deacetylases (HDACs) (1). Signaling resulting in acetylation/deacetylation of histones, transcription factors, and other proteins affects a diverse array of cellular processes including chromatin structure and gene activity, cell growth, differentiation, and apoptosis (2-6). Recent proteomic surveys suggest that acetylation of lysine residues may be a widespread and important form of posttranslational protein modification that affects thousands of proteins involved in control of cell cycle and metabolism, longevity, actin polymerization, and nuclear transport (7,8). The regulation of protein acetylation status is impaired in cancer and polyglutamine diseases (9), and HDACs have become promising targets for anti-cancer drugs currently in development (10).

  1. Hassig, C.A. and Schreiber, S.L. (1997) Curr Opin Chem Biol 1, 300-8.
  2. Allfrey, V.G. et al. (1964) Proc Natl Acad Sci USA 51, 786-94.
  3. Liu, L. et al. (1999) Mol Cell Biol 19, 1202-9.
  4. Boyes, J. et al. (1998) Nature 396, 594-8.
  5. Polevoda, B. and Sherman, F. (2002) Genome Biol 3, reviews 0006.
  6. Yoshida, M. et al. (2003) Prog Cell Cycle Res 5, 269-78.
  7. Kim, S.C. et al. (2006) Mol Cell 23, 607-18.
  8. Choudhary, C. et al. (2009) Science 325, 834-40.
  9. Hughes, R.E. (2002) Curr Biol 12, R141-3.
  10. Vigushin, D.M. and Coombes, R.C. (2004) Curr Cancer Drug Targets 4, 205-18.
For Research Use Only. Not For Use In Diagnostic Procedures.

AcetylScan is a trademark of Cell Signaling Technology, Inc.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
MethylScan is a trademark of Cell Signaling Technology, Inc.
PhosphoScan is a trademark of Cell Signaling Technology, Inc.
PhosphoSitePlus is a trademark of Cell Signaling Technology, Inc.
PTMScan is a trademark of Cell Signaling Technology, Inc.
UbiScan is a trademark of Cell Signaling Technology, Inc.
Use of Cell Signaling Technology (CST) Motif Antibodies within certain methods (e.g., U.S. Patents No. 7,198,896 and 7,300,753) may require a license from CST. For information regarding academic licensing terms please have your technology transfer office contact CST Legal Department at CST_ip@cellsignal.com. For information regarding commercial licensing terms please contact CST Pharma Services Department at ptmscan@cellsignal.com.

News from the Bench

Discover what’s going on at CST, receive our latest application notes and tips, read our science features, and learn about our products.

Subscribe