News from the Bench

Discover what’s going on at CST, receive our latest application notes and tips, read our science features, and learn about our products.

Subscribe

PTMScan® Motif Antibody Kits
New Format-Same Price

Now 10 Assays Per Kit

Order Now

Pricing & Additional Information

To learn more about our Proteomics Kits and Services, including pricing, please answer a few questions for our proteomics group.

Contact the CST Proteomics Group  

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

Product Includes Cap Color Volume (with Count)
PTMScan® Acetyl-Lysine Motif [Ac-K] Immunoaffinity Beads Blue 10 x 80 µl
PTMScan® IAP Buffer (10X) 9993 White 10 x 600 µl
PTMScan® Limited Use License  

Product Usage Information

Cells are lysed in a urea-containing buffer, cellular proteins are digested by proteases, and the resulting peptides are purified by reversed-phase solid-phase extraction. Peptides are then subjected to immunoaffinity purification using a PTMScan® Motif Antibody conjugated to protein A agarose beads. Unbound peptides are removed through washing, and the captured PTM-containing peptides are eluted with dilute acid. Reversed-phase purification is performed on microtips to desalt and separate peptides from antibody prior to concentrating the enriched peptides for LC-MS/MS analysis. CST recommends the use of PTMScan® IAP Buffer #9993 included in the kit. An alternate PTMScan® IAP Buffer Plus Detergent #9992, which may reduce nonspecific interactions, is available separately. A detailed protocol and Limited Use License allowing the use of the patented PTMScan® method are included with the kit.


Storage: Antibody beads supplied in IAP buffer containing 50% glycerol. Store at -20°C. Do not aliquot the antibody.

Product Description

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1). For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/common/content/content.jsp?id=ptmscan-services.


Acetylation of lysine, like phosphorylation of serine, threonine or tyrosine, is an important reversible modification controlling protein activity. The conserved amino-terminal domains of the four core histones (H2A, H2B, H3, and H4) contain lysines that are acetylated by histone acetyltransferases (HATs) and deacetylated by histone deacetylases (HDACs) (1). Signaling resulting in acetylation/deacetylation of histones, transcription factors, and other proteins affects a diverse array of cellular processes including chromatin structure and gene activity, cell growth, differentiation, and apoptosis (2-6). Recent proteomic surveys suggest that acetylation of lysine residues may be a widespread and important form of posttranslational protein modification that affects thousands of proteins involved in control of cell cycle and metabolism, longevity, actin polymerization, and nuclear transport (7,8). The regulation of protein acetylation status is impaired in cancer and polyglutamine diseases (9), and HDACs have become promising targets for anti-cancer drugs currently in development (10).


1.  Hassig, C.A. and Schreiber, S.L. (1997) Curr Opin Chem Biol 1, 300-8.

2.  Allfrey, V.G. et al. (1964) Proc Natl Acad Sci USA 51, 786-94.

3.  Liu, L. et al. (1999) Mol Cell Biol 19, 1202-9.

4.  Boyes, J. et al. (1998) Nature 396, 594-8.

5.  Polevoda, B. and Sherman, F. (2002) Genome Biol 3, reviews 0006.

6.  Yoshida, M. et al. (2003) Prog Cell Cycle Res 5, 269-78.

7.  Kim, S.C. et al. (2006) Mol Cell 23, 607-18.

8.  Choudhary, C. et al. (2009) Science 325, 834-40.

9.  Hughes, R.E. (2002) Curr Biol 12, R141-3.

10.  Vigushin, D.M. and Coombes, R.C. (2004) Curr Cancer Drug Targets 4, 205-18.



For Research Use Only. Not For Use In Diagnostic Procedures.
AcetylScan® is a trademark of Cell Signaling Technology, Inc.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.
MethylScan® is a trademark of Cell Signaling Technology, Inc.
PhosphoScan® is a trademark of Cell Signaling Technology, Inc.
PhosphoSitePlus® is a trademark of Cell Signaling Technology, Inc.
PTMScan® is a trademark of Cell Signaling Technology, Inc.
UbiScan® is a trademark of Cell Signaling Technology, Inc.
Use of Cell Signaling Technology (CST) Motif Antibodies within certain methods (e.g., U.S. Patents No. 7,198,896 and 7,300,753) may require a license from CST. For information regarding academic licensing terms please have your technology transfer office contact CST Legal Department at CST_ip@cellsignal.com. For information regarding commercial licensing terms please contact CST Pharma Services Department at ptmscan@cellsignal.com.