Revision 1

#5523Store at -20C

Cell Signaling Technology

Orders: 877-616-CELL (2355) [email protected]

Support: 877-678-TECH (8324)

Web: [email protected] cellsignal.com

3 Trask LaneDanversMassachusetts01923USA
For Research Use Only. Not for Use in Diagnostic Procedures.
Applications:

WB

REACTIVITY:

H M R Mk

SENSITIVITY:

Endogenous

MW (kDa):

79

Source/Isotype:

Rabbit IgG

UniProt ID:

#Q9BY84

Entrez-Gene Id:

80824

Product Information

Product Usage Information

Application Dilution
Western Blotting 1:1000

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Specificity / Sensitivity

DUSP16/MKP7 (D5F4) Rabbit mAb recognizes endogenous levels of total DUSP16 protein.

Species Reactivity:

Human, Mouse, Rat, Monkey

Species predicted to react based on 100% sequence homology

Horse

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Lys431 of human DUSP16 protein.

Background

MAP kinases are inactivated by dual-specificity protein phosphatases (DUSPs) that differ in their substrate specificity, tissue distribution, inducibility by extracellular stimuli, and cellular localization. DUSPs, also known as MAPK phosphatases (MKPs), specifically dephosphorylate both threonine and tyrosine residues in MAPK P-loops and have been shown to play important roles in regulating the function of the MAPK family (1,2). At least 13 members of the family (DUSP1-10, DUSP14, DUSP16, and DUSP22) display unique substrate specificities for various MAP kinases (3). MAPK phosphatases typically contain an amino-terminal rhodanese-fold responsible for DUSP docking to MAPK family members and a carboxy-terminal catalytic domain (4). These phosphatases can play important roles in development, immune system function, stress responses, and metabolic homeostasis (5). In addition, research studies have implicated DUSPs in the development of cancer and the response of cancer cells to chemotherapy (6).

DUSP16/MKP7 is a negative regulator of the JNK/SAPK family of stress-activated MAP kinases. It inhibits JNK-mediated signaling events by dephosphorylating threonine and tyrosine residues within the activation loop of JNK proteins, effectively preventing further activation of downstream effectors (7,8). DUSP16/MKP7 expression has been shown to be upregulated after oxidative stress, presumably as a means of supressing JNK activity in order to return the cells to a homeostatic state (9). DUSP16 is normally turned over at a high-rate in most cells, but the stability of the protein can be enhanced by Erk1/2-mediated phosphorylation on Ser446, indicating that activation of mitogenic signaling pathways can supress stress-response pathways via stabilization of a JNK phosphatase (10,11). Despite demonstrating a substrate preference towards JNK proteins, DUSP16/MKP7 has been shown to interact with other MAPK family members (Erk1/2, p38 MAPKs) as well as scaffolding proteins that may coordinate its activity and specificity (12,13).

DUSP16 is epigenetically silenced in Burkitt's lymphoma by increased methylation of the 5' regulatory regions of the gene (14). Methylation of the DUSP16 gene and expression of DUSP16 protein inversely correlate with increased basal levels of JNK acitvitiy, suggesting DUSP16/MKP7 may play a critical role in maintaining JNK signaling in an "off" state in normal cells (14). More recently, DUSP16/MKP7 has been shown to play a crucial role in T helper (Th) cell differentiation into Th1 and Th2 cells, mediated by JNK signaling pathways (15). DUSP16/MKP7 expression is preferentially high in Th2 cells and low in Th1 cells during differentiation, resulting in either low (Th2) or high (Th1) JNK activity. This suggests that DUSP16 expression may be a regulator of Th cell balance (15).

  1. Camps, M. et al. (2000) FASEB J 14, 6-16.
  2. Theodosiou, A. and Ashworth, A. (2002) Genome Biol 3, REVIEWS3009.
  3. Salojin, K. and Oravecz, T. (2007) J Leukoc Biol 81, 860-9.
  4. Tanoue, T. et al. (2002) J Biol Chem 277, 22942-9.
  5. Dickinson, R.J. and Keyse, S.M. (2006) J Cell Sci 119, 4607-15.
  6. Wu, G.S. (2007) Cancer Metastasis Rev 26, 579-85.
  7. Matsuguchi, T. et al. (2001) Mol Cell Biol 21, 6999-7009.
  8. Masuda, K. et al. (2001) J Biol Chem 276, 39002-11.
  9. Teng, C.H. et al. (2007) J Biol Chem 282, 28395-407.
  10. Katagiri, C. et al. (2005) J Biol Chem 280, 14716-22.
  11. Masuda, K. et al. (2003) J Biol Chem 278, 32448-56.
  12. Willoughby, E.A. and Collins, M.K. (2005) J Biol Chem 280, 25651-8.
  13. Willoughby, E.A. et al. (2003) J Biol Chem 278, 10731-6.
  14. Lee, S. et al. (2010) Br J Cancer 103, 265-74.
  15. Musikacharoen, T. et al. (2011) J Biol Chem 286, 24896-905.

Species Reactivity

Species reactivity is determined by testing in at least one approved application (e.g., western blot).

Western Blot Buffer

IMPORTANT: For western blots, incubate membrane with diluted primary antibody in 5% w/v BSA, 1X TBS, 0.1% Tween® 20 at 4°C with gentle shaking, overnight.

Applications Key

WB: Western Blotting

Cross-Reactivity Key

H: human M: mouse R: rat Hm: hamster Mk: monkey Vir: virus Mi: mink C: chicken Dm: D. melanogaster X: Xenopus Z: zebrafish B: bovine Dg: dog Pg: pig Sc: S. cerevisiae Ce: C. elegans Hr: horse GP: Guinea Pig Rab: rabbit All: all species expected

Trademarks and Patents

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit cellsignal.com/trademarks for more information.

Limited Uses

Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.

Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.