Cell Signaling Technology Logo - Extra Large
Recombinant Flag
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

Tyrosine Hydroxylase (E2L6M) Rabbit Monoclonal Antibody (SignalFlex Alexa Fluor® 555 Conjugate) #18657

    Product Specifications

    REACTIVITY H M R
    SENSITIVITY Endogenous
    MW (kDa)
    Source/Isotype Rabbit IgG
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 

    Product Information

    Product Description

    This Cell Signaling Technology® antibody is conjugated to Alexa Fluor® 555 fluorescent dye under optimal conditions and formulated at 200 µg/mL. This antibody conjugate is expected to exhibit the same species cross-reactivity as the unconjugated #58844

    Fluorescent Properties

    • ← Excitation: 555 nm ← Emission: 565 nm

    Product Usage Information

    SignalFlex™ conjugates are produced using highly validated Cell Signaling Technology® primary antibodies and conjugation methods that have been rigorously tested, ensuring high-quality conjugates and lot-to-lot consistency. These conjugates are quality control tested by size exclusion chromatography (SEC) to determine antibody integrity. However, they are not tested on specific assays.

    Optimal dilutions/concentrations should be determined by the end user. When performing flow cytometry, we recommend using an isotype control conjugate at the same concentration as the antibody conjugate.

    Storage

    Supplied in PBS (pH 7.2), less than 0.1% sodium azide, and 2 mg/mL BSA. Store at 4°C. Do not aliquot the antibody. Protect from light. Do not freeze.

    Specificity / Sensitivity

    Tyrosine Hydroxylase (E2L6M) Rabbit mAb (SignalFlex™ Alexa Fluor® 555 Conjugate) recognizes endogenous levels of total tyrosine hydroxylase protein.

    Species Reactivity:

    Human, Mouse, Rat

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy terminus of human tyrosine hydroxylase protein.

    Background

    Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the neurotransmitter dopamine and other catecholamines. TH functions as a tetramer, with each subunit composed of a regulatory and catalytic domain, and exists in several different isoforms (1,2). This enzyme is required for embryonic development since TH knockout mice die before or at birth (3). Levels of transcription, translation and post-translational modification regulate TH activity. The amino-terminal regulatory domain contains three serine residues: Ser9, Ser31, and Ser40. Phosphorylation at Ser40 by PKA positively regulates the catalytic activity of TH (4-6). Phosphorylation at Ser31 by CDK5 also increases the catalytic activity of TH through stabilization of TH protein levels (7-9).

    Alternate Names

    dystonia 14; DYT14; DYT5b; HTH-2; TH; TH2; TY3H; TYH; Tyrosine 3-hydroxylase; Tyrosine 3-monooxygenase; tyrosine hydroxylase

    For Research Use Only. Not for Use in Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    Alexa Fluor is a registered trademark of Life Technologies Corporation.
    SignalFlex is a trademark of Cell Signaling Technology, Inc.
    This product is provided under an intellectual property license from Life Technologies Corporation. The transfer of this product is conditioned on the buyer using the purchased product solely in research conducted by the buyer, excluding contract research or any fee for service research, and the buyer must not (1) use this product or its components for (a) diagnostic, therapeutic or prophylactic purposes; (b) testing, analysis or screening services, or information in return for compensation on a per-test basis; or (c) manufacturing or quality assurance or quality control, and/or (2) sell or transfer this product or its components for resale, whether or not resold for use in research. For information on purchasing a license to this product for purposes other than as described above, contact Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, CA 92008 USA or [email protected].
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.