Buy Three, Get the Fourth Free! | Start Saving >>
81136
Hemoglobin γ (D4K7X) Rabbit mAb (PE Conjugate)
Antibody Conjugates

Hemoglobin γ (D4K7X) Rabbit mAb (PE Conjugate) #81136

APPLICATIONS

REACTIVITY SENSITIVITY MW (kDa) Isotype
H Endogenous Rabbit IgG
Flow Cytometry

Flow cytometric analysis of Ramos cells (blue) and K-562 cells (green) using Hemoglobin γ (D4K7X) Rabbit mAb (PE Conjugate) (solid lines) or a concentration-matched Rabbit (DA1E) mAb IgG XP® Isotype Control (PE Conjugate) #5742 (dashed lines).

Learn more about how we get our images.

Flow Cytometry, Methanol Permeabilization Protocol for Direct Conjugates

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L 1X PBS: add 50 ml 20X PBS to 950 ml dH2O, mix.
  2. 16% Formaldehyde (methanol free).
  3. 100% methanol.
  4. Incubation Buffer: Dissolve 0.5 g Bovine Serum Albumin (BSA) (#9998) in 100 ml 1X PBS. Store at 4°C.

B. Fixation

NOTE: If using whole blood, lyse red blood cells and wash by centrifugation prior to fixation.

  1. Collect cells by centrifugation and aspirate supernatant.
  2. Resuspend cells in 0.5-1 ml 1X PBS. Add formaldehyde to obtain a final concentration of 4%.
  3. Fix for 15 min at room temperature.
  4. Wash by centrifugation with excess 1X PBS. Discard supernatant in appropriate waste container. Resuspend cells in 0.5-1 ml 1X PBS.

C. Permeabilization

  1. Permeabilize cells by adding ice-cold 100% methanol slowly to pre-chilled cells, while gently vortexing, to a final concentration of 90% methanol.
  2. Incubate 30 min on ice.
  3. Proceed with immunostaining (Section D) or store cells at -20°C in 90% methanol.

D. Immunostaining

  1. Aliquot desired number of cells into tubes or wells.
  2. Wash cells by centrifugation in excess 1X PBS to remove methanol. Discard supernatant in appropriate waste container. Repeat if necessary.
  3. Resuspend cells in 100 µl of diluted antibody conjugate (prepared in incubation buffer at the recommended dilution).
  4. Incubate for 1 hr at room temperature. Protect from light.
  5. Wash by centrifugation in incubation buffer. Discard supernatant. Repeat.
  6. Resuspend cells in 1X PBS and analyze on flow cytometer; alternatively, for DNA staining, proceed to optional DNA stain (Section E).

E. Optional DNA Dye

  1. Resuspend cells in 0.5 ml of DNA dye (e.g. Propidium Iodide (PI)/RNase Staining Solution #4087).
  2. Incubate for at least 5 min at room temperature.
  3. Analyze cells in DNA staining solution on flow cytometer.

posted July 2009

revised June 2017

Protocol Id: 407

Application Dilutions
Flow Cytometry 1:50
Storage:

Supplied in PBS (pH 7.2), less than 0.1% sodium azide and 2 mg/ml BSA. Store at 4°C. Do not aliquot the antibody. Protect from light. Do not freeze.

Hemoglobin γ (D4K7X) Rabbit mAb (PE Conjugate) recognizes endogenous levels of the hemoglobin γ subunit. This antibody recognizes both HBG1 and HBG2 isoforms, but does not cross-react with the hemoglobin β subunit.

Species Reactivity:

Human

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Val21 of human hemoglobin γ (HBG1) protein.

This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Hemoglobin γ (D4K7X) Rabbit mAb #39386.

Hemoglobin (Hb, Hgb) is a heme-containing transport protein found primarily in the red blood cells of humans and most other vertebrates. The primary function of hemoglobin is to transport oxygen from the external environment to the body tissues. Hemoglobin also facilitates metabolic waste removal by assisting in the transport of carbon dioxide from tissues back to the respiratory organs (1). Mature hemoglobin is a tetrameric protein complex, with each subunit containing an oxygen-binding heme group (2). Multiple isoforms of hemoglobin exist, which vary in relative abundance depending on developmental stage. Adult hemoglobin (HbA) is comprised of two α subunits and two β subunits and is the predominant hemoglobin found in red blood cells of children and adults. Fetal hemoglobin (HbF) contains two α subunits and two γ subunits and is the predominant isoform found during fetal and early postnatal development (2,3). Mutations that alter the structure or abundance of specific globin subunits can result in pathological conditions known as hemoglobinopathies (4). One such disorder is sickle cell disease, which is characterized by structural abnormalities that limit the oxygen carrying capacity of red blood cells. By contrast, thalassemia disorders are characterized by deficiencies in the abundance of specific hemoglobin subunits (4). Clinical treatments that are designed to alter the expression of specific hemoglobin subunits can be used to treat hemoglobinopathies (5).

  1. Hardison, R. (1998) J Exp Biol 201, 1099-117.
  2. Sankaran, V.G. et al. (2010) Br J Haematol 149, 181-94.
  3. Bank, A. (2006) Blood 107, 435-43.
  4. Thein, S.L. (2013) Cold Spring Harb Perspect Med 3, a011700.
  5. Fucharoen, S. et al. (1996) Blood 87, 887-92.
Entrez-Gene Id
3047
Swiss-Prot Acc.
P69891
For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
XP is a registered trademark of Cell Signaling Technology, Inc.

Upstream / Downstream

pathwayImage

Explore pathways related to this product.

To Purchase # 81136S

View sizes
Product # Size Price
81136S
100 µl  (50 tests) $ 305.0