Buy Three, Get the Fourth Free! | Start Saving >>
11979
Phospho-Smad2 (Ser465/467)/Smad3 (Ser423/425) (D27F4) Rabbit mAb (PE Conjugate)
Antibody Conjugates

Phospho-Smad2 (Ser465/467)/Smad3 (Ser423/425) (D27F4) Rabbit mAb (PE Conjugate) #11979

This product is discontinued

Storage:

Supplied in PBS (pH 7.2), less than 0.1% sodium azide and 2 mg/ml BSA. Store at 4°C. Do not aliquot the antibodies. Protect from light. Do not freeze.

Phospho-Smad2 (Ser465/467)/Smad3 (Ser423/425) (D27F4) Rabbit mAb (PE Conjugate) recognizes endogenous levels of Smad2 protein when phosphorylated at Ser465 and Ser467. This antibody also recognizes endogenous levels of Smad3 protein when phosphorylated at Ser422 only or at both Ser423 and Ser425.

Monoclonal antibody is produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser465/467 of human Smad2 protein.

This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Smad2 (Ser465/467)/Smad3 (Ser423/425) (D27F4) Rabbit mAb #8828.

Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

  1. Heldin, C.H. et al. (1997) Nature 390, 465-71.
  2. Attisano, L. and Wrana, J.L. (1998) Curr Opin Cell Biol 10, 188-94.
  3. Derynck, R. et al. (1998) Cell 95, 737-40.
  4. Massagué, J. (1998) Annu Rev Biochem 67, 753-91.
  5. Whitman, M. (1998) Genes Dev 12, 2445-62.
  6. Wu, G. et al. (2000) Science 287, 92-7.
  7. Attisano, L. and Wrana, J.L. (2002) Science 296, 1646-7.
  8. Moustakas, A. et al. (2001) J Cell Sci 114, 4359-69.
Entrez-Gene Id
4087 , 4088
Swiss-Prot Acc.
Q15796 , P84022
For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.

Upstream / Downstream

pathwayImage

Explore pathways related to this product.