Render Target: STATIC
Render Timestamp: 2024-07-26T10:25:19.171Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody (Alexa Fluor Conjugate)
PDP - Template ID: *******c8ce56b
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

STING (E9X7F) Rabbit mAb (Alexa Fluor® 488 Conjugate) #78827

Filter:
  • IF
  • F

    Supporting Data

    REACTIVITY H M
    SENSITIVITY Endogenous
    MW (kDa)
    Source/Isotype Rabbit IgG
    Application Key:
    • IF-Immunofluorescence 
    • F-Flow Cytometry 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 

    Product Information

    Product Description

    This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye under optimal conditions and tested in-house for direct flow cytometric analysis in human cells and immunofluorescent analysis in human cells and mouse tissue. This antibody conjugate is expected to exhibit the same species cross-reactivity as the unconjugated STING (E9X7F) Rabbit mAb #90947.

    Product Usage Information

    Application Dilution
    Immunofluorescence (Frozen) 1:100 - 1:400
    Immunofluorescence (Immunocytochemistry) 1:1600 - 1:3200
    Flow Cytometry (Fixed/Permeabilized) 1:1600

    Storage

    Supplied in PBS (pH 7.2), less than 0.1% sodium azide, and 2 mg/mL BSA. Store at 4°C. Do not aliquot the antibody. Protect from light. Do not freeze.

    Protocol

    Specificity / Sensitivity

    STING (E9X7F) Rabbit mAb (Alexa Fluor® 488 Conjugate) recognizes endogenous levels of total STING protein. STING (E9X7F) Rabbit mAb (Alexa Fluor® 488 Conjugate) lacks sensitivity in some low-expressing mouse cell lines by immunofluorescence. This lack of sensitivity has not been observed in human cell lines.


    Species Reactivity:

    Human, Mouse

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with human STING recombinant protein and reacts with an epitope near the carboxy terminus.

    Background

    Stimulator of interferon genes (STING, TMEM173, MITA) is a transmembrane adaptor protein that is a critical component of the cellular innate immune response to pathogenic cytoplasmic DNA (1,2). STING is a ubiquitously expressed protein found predominantly in the ER (1). The enzyme cGAMP synthase (cGAS) produces the second messenger cyclic-GMP-AMP (cGAMP) in response to cytoplasmic DNA (3,4). cGAMP binds and activates STING (3,4). In addition, detection of cytoplasmic DNA by nucleic acid sensors, including DDX41 or IFI16, results in STING activation (5,6). Following activation, STING translocates with TBK1 to perinuclear endosomes and gets phosphorylated by ULK1 at Ser366 (Ser365 in mouse) (7,8). The TBK1 kinase phosphorylates and activates IRF-3 and NF-κB, which leads to the induction of type I interferon and other immune response genes (1,2,7).

    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    Alexa Fluor is a registered trademark of Life Technologies Corporation.
    This product is provided under an intellectual property license from Life Technologies Corporation. The transfer of this product is conditioned on the buyer using the purchased product solely in research conducted by the buyer, excluding contract research or any fee for service research, and the buyer must not (1) use this product or its components for (a) diagnostic, therapeutic or prophylactic purposes; (b) testing, analysis or screening services, or information in return for compensation on a per-test basis; or (c) manufacturing or quality assurance or quality control, and/or (2) sell or transfer this product or its components for resale, whether or not resold for use in research. For information on purchasing a license to this product for purposes other than as described above, contact Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, CA 92008 USA or [email protected].
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.