Cell Signaling Technology Logo - Extra Large
Recombinant Flag
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

Toll-like Receptor 9 (D9M9H) XP® Rabbit mAb (PE Conjugate)  #14575

Filter:
  • F

Inquiry Info. # 14575

Please see our recommended alternatives.

    Product Specifications

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa)
    Source/Isotype Rabbit IgG
    Application Key:
    • F-Flow Cytometry 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Description

    This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Toll-like Receptor 9 (D9M9H) XP® Rabbit mAb #13674.

    Product Usage Information

    Application Dilution
    Flow Cytometry (Fixed/Permeabilized) 1:50

    Storage

    Supplied in PBS (pH 7.2), less than 0.1% sodium azide and 2 mg/ml BSA. Store at 4°C. Do not aliquot the antibodies. Protect from light. Do not freeze.

    Protocol

    Specificity / Sensitivity

    Toll-like Receptor 9 (D9M9H) XP® Rabbit mAb (PE Conjugate)  recognizes endogenous levels of total toll-like receptor 9 protein. This antibody conjugate is predicted to recognize known full-length isoforms of toll-like receptor 9, but not cleaved toll-like receptor 9 protein.

    Species Reactivity:

    Human

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Pro450 of human toll-like receptor 9 protein.

    Background

    Members of the Toll-like receptor (TLR) family, named for the closely related Toll receptor in Drosophila, play a pivotal role in innate immune responses (1-4). TLRs recognize conserved motifs found in various pathogens and mediate defense responses (5-7). Triggering of the TLR pathway leads to the activation of NF-κB and subsequent regulation of immune and inflammatory genes (4). The TLRs and members of the IL-1 receptor family share a conserved stretch of approximately 200 amino acids known as the Toll/Interleukin-1 receptor (TIR) domain (1). Upon activation, TLRs associate with a number of cytoplasmic adapter proteins containing TIR domains, including myeloid differentiation factor 88 (MyD88), MyD88-adapter-like/TIR-associated protein (MAL/TIRAP), TIR domain-containing adapter-inducing IFN-β (TRIF), and Toll-receptor-associated molecule (TRAM) (8-10). This association leads to the recruitment and activation of IRAK1 and IRAK4, which form a complex with TRAF6 to activate TAK1 and IKK (8,11-14). Activation of IKK leads to the degradation of IκB, which normally maintains NF-κB in an inactive state by sequestering it in the cytoplasm.

    Toll-like receptor 9 (TLR9) is highly expressed in macrophages, dendritic cells, and B lymphocytes; five isoforms are generated by alternative splicing in humans (15,16). TLR9 binds to unmethylated CpG motifs present on bacterial DNA and stimulates NF-κB via the MyD88 adaptor protein (17-19). In contrast to most TLR family members that are localized to the plasma membrane, TLR9 is an intracellular receptor localized to the ER in resting cells (20). Upon binding to CpG DNA, TLR9 is proteolytically processed and translocates to endo-lysosomal compartments where it binds MyD88 to initiate downstream signaling (21-23).
    1. Akira, S. (2003) J Biol Chem 278, 38105-8.
    2. Beutler, B. (2004) Nature 430, 257-63.
    3. Dunne, A. and O'Neill, L.A. (2003) Sci STKE 2003, re3.
    4. Medzhitov, R. et al. (1997) Nature 388, 394-7.
    5. Schwandner, R. et al. (1999) J Biol Chem 274, 17406-9.
    6. Takeuchi, O. et al. (1999) Immunity 11, 443-51.
    7. Alexopoulou, L. et al. (2001) Nature 413, 732-8.
    8. Zhang, F.X. et al. (1999) J Biol Chem 274, 7611-4.
    9. Horng, T. et al. (2001) Nat Immunol 2, 835-41.
    10. Oshiumi, H. et al. (2003) Nat Immunol 4, 161-7.
    11. Muzio, M. et al. (1997) Science 278, 1612-5.
    12. Wesche, H. et al. (1997) Immunity 7, 837-47.
    13. Suzuki, N. et al. (2002) Nature 416, 750-6.
    14. Irie, T. et al. (2000) FEBS Lett 467, 160-4.
    15. Du, X. et al. (2000) Eur Cytokine Netw 11, 362-71.
    16. Chuang, T.H. and Ulevitch, R.J. (2000) Eur Cytokine Netw 11, 372-8.
    17. Hemmi, H. et al. (2000) Nature 408, 740-5.
    18. Bauer, S. et al. (2001) Proc Natl Acad Sci U S A 98, 9237-42.
    19. Takeshita, F. et al. (2001) J Immunol 167, 3555-8.
    20. Latz, E. et al. (2004) Nat Immunol 5, 190-8.
    21. Park, B. et al. (2008) Nat Immunol 9, 1407-14.
    22. Ewald, S.E. et al. (2008) Nature 456, 658-62.
    23. Sepulveda, F.E. et al. (2009) Immunity 31, 737-48.

    Alternate Names

    CD289; TLR9; toll like receptor 9; Toll-like receptor 9

    For Research Use Only. Not for Use in Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.