Render Target: STATIC
Render Timestamp: 2024-11-06T11:04:20.568Z
Commit: 642d75590e907c0f7dfc7c6e3b846bcc0b02197c
XML generation date: 2024-09-20 06:22:19.389
Product last modified at: 2024-09-20T07:02:04.081Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

TXNIP (D5F3E) Rabbit mAb (Biotinylated) #67280

Filter:
  • WB

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 55
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Description

    This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated TXNIP (D5F3E) Rabbit mAb #14715.
    MW (kDa) 55

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 136 mM NaCl, 2.6 mM KCI, 12 mM sodium phosphate (pH 7.4) dibasic, 2 mg/ml BSA, and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    TXNIP (D5F3E) Rabbit mAb (Biotinylated) recognizes endogenous levels of total TXNIP protein.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Val337 of human TXNIP protein.

    Background

    The ubiquitously expressed thioredoxin-interacting protein (TXNIP) binds and inhibits thioredoxin to regulate cellular redox state (1-3). Research studies demonstrate that hyperglycemia induces TXNIP expression and increases cellular oxidative stress (1). In addition, these studies show that TXNIP reduces glucose uptake directly by binding the glucose transporter Glut1 to stimulate receptor internalization or indirectly by reducing Glut1 mRNA levels (3). Additional studies indicate that TXNIP plays a role in the regulation of insulin mRNA transcription (4). Microarray analyses indicate that TXNIP acts downstream of PPARγ and is a putative tumor suppressor that may control thyroid cancer cell progression (5). In addition, the TXNIP protein may be a potential therapeutic target for the treatment of type 2 diabetes and some disorders related to ER-stress (6).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.