Render Target: STATIC
Render Timestamp: 2024-07-26T10:38:07.266Z
1% for the planet logo
PDP - Template Name: Assay Kit Cap Color
PDP - Template ID: *******8ef7fbf

Glucose-6-Phosphate Dehydrogenase (G6PD) Activity Assay Kit #12581

    Product Information

    Protocol

    Product Description

    The Glucose-6-Phosphate Dehydrogenase (G6PD) Activity Assay Kit contains the necessary reagents for rapid, sensitive, and simple detection of G6PD activity in various samples. In the assay, glucose-6-phosphate (G6P), in the presence of NADP, is oxidized by G6PD to generate 6-phosphogluconolactone and NADPH. The generated NADPH is then amplified by the diaphorase-cycling system to produce highly fluorescent resorufin molecules (see Figure 1). The relative fluorescent units (RFU) can then be determined using a plate reader with excitation about 540 nm and emission about 590 nm. The magnitude of RFU is proportional to G6PD activity in the sample.

    Specificity / Sensitivity

    The Glucose-6-Phosphate Dehydrogenase (G6PD) Activity Assay Kit detects sample G6PD activity. The presence of NADH and NADPH may interfere with the assay.


    Species Reactivity:

    All Species Expected

    Background

    Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first, and rate-limiting, step of the pentose phosphate pathway (1). The NADPH generated from this reaction is essential to protect cells from oxidative stress (1). Research studies have shown that p53 interacts with G6PD and inhibits its activity, therefore suppressing glucose consumption through the pentose phosphate pathway (2). In cancer cells with p53 mutations, the increased glucose consumption is directed towards increased biosynthesis, which is critical for cancer cell proliferation (2).

    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    PathScan is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.