Upstream / Downstream


Explore pathways related to this product.

Santa Cruz discontinued a large number of its polyclonal products as a result of the USDA settlement that was made public May 19th 2016

Find CST Equivalent


Find answers on our FAQs page.


PhosphoSitePlus® Resource

  • Additional protein information
  • Analytical tools


Product Description

This peptide is used to block Phospho-Histone H3 (Ser10) Antibody #9701 reactivity.

Quality Control

The quality of the peptide was evaluated by reversed-phase HPLC and by mass spectrometry. The peptide blocks Phospho-Histone H3 (Ser10) Antibody #9701 by immunohistochemistry.

Product Usage Information

Use as a blocking reagent to evaluate the specificity of antibody reactivity in Western immunoblotting and immunohistochemistry protocols. For immunohistochemistry, add twice the volume of peptide as volume of antibody used in 100 µl total volume. Incubate for a minimum of 30 minutes prior to adding the entire volume to the slide. Recommended antibody dilutions can be found on the relevant product data sheet.

For Western immunoblotting, add 10 µl of antibody and 10 µl of blocking peptide to 10 ml of antibody dilution buffer, and incubate at room temperature for 30 minutes before allowing to react with the blot.

Storage: Supplied in 20 mM potassium phosphate (pH 7.0), 50 mM NaCl, 0.1 mM EDTA, 1 mg/ml BSA, 5% glycerol and 1% DMSO. Store at –20°C.

Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

1.  Workman, J.L. and Kingston, R.E. (1998) Annu Rev Biochem 67, 545-79.

2.  Hansen, J.C. et al. (1998) Biochemistry 37, 17637-41.

3.  Strahl, B.D. and Allis, C.D. (2000) Nature 403, 41-5.

4.  Cheung, P. et al. (2000) Cell 103, 263-71.

5.  Bernstein, B.E. and Schreiber, S.L. (2002) Chem Biol 9, 1167-73.

6.  Jaskelioff, M. and Peterson, C.L. (2003) Nat Cell Biol 5, 395-9.

7.  Thorne, A.W. et al. (1990) Eur J Biochem 193, 701-13.

8.  Hendzel, M.J. et al. (1997) Chromosoma 106, 348-60.

9.  Goto, H. et al. (1999) J Biol Chem 274, 25543-9.

10.  Preuss, U. et al. (2003) Nucleic Acids Res 31, 878-85.

11.  Dai J et al. (2005) Genes Dev 19, 472–88

Entrez-Gene Id 8350
Swiss-Prot Acc. P68431

For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.

Phospho-Histone H3 (Ser10) Blocking Peptide