Render Target: STATIC
Render Timestamp: 2024-10-15T09:44:47.409Z
Commit: 56767fe525c928647c8401233a175d0d607d385d
XML generation date: 2024-04-05 20:24:55.181
Product last modified at: 2024-06-27T13:36:14.145Z
1% for the planet logo
PDP - Template Name: Blocking Peptide
PDP - Template ID: *******6db2f4c

SRC-1 Blocking Peptide #1433

Pricing & Additional Information

To learn more about our Blocking Peptides, including pricing or custom products, please submit a product inquiry request.

Submit Blocking Peptide Inquiry

    Product Information

    Product Usage Information

    Use as a blocking reagent to evaluate the specificity of antibody reactivity in dot blot protocols.

    Storage

    Supplied in 20 mM potassium phosphate (pH 7.0), 50 mM NaCl, 0.1 mM EDTA, 1 mg/ml BSA and 5% glycerol. 1% DMSO. Store at –20°C.

    Product Description

    This peptide is used to block SRC-1 (128E7) Rabbit mAb #2191 reactivity in dot blot protocols.

    Quality Control

    The quality of the peptide was evaluated by reversed-phase HPLC and by mass spectrometry. The peptide blocks SRC-1 (128E7) Rabbit mAb #2191 by dot blot.

    Background

    There are three members of the steroid receptor co-activator (SRC) family of proteins: SRC-1 (NCoA-1), SRC-2 (TIF2/GRIP1/NCoA-2), and SRC-3 (ACTR/pCIP/RAC3/TRAM-1/AIB1). All SRC family members share significant structural homology and function to stimulate transcription mediated by nuclear hormone receptors and other transcriptional activators such as Stat3, NF-κB, E2F1, and p53 (1-4). Two SRC proteins, SRC-1 and SRC-3, function as histone acetyltransferases (5,6). In addition, all three family members can recruit other histone acetyltransferases (CBP/p300, PCAF) and histone methyltransferases (PRMT1, CARM1) to target promoters and cooperate to enhance expression of many genes (5-8). The SRC proteins play important roles in multiple physiological processes including cell proliferation, cell survival, somatic cell growth, mammary gland development, female reproductive function, and vasoprotection (9). SRC-1 and SRC-3 are conduits for kinase-mediated growth factor signaling to the estrogen receptor and other transcriptional activators. Seven SRC-1 phosphorylation sites and six SRC-3 phosphorylation sites have been identified, which are induced by steroids, cytokines, and growth factors and involve multiple kinase signaling pathways (9-11). Research has shown that all three SRC family members are associated with increased activity of nuclear receptors in breast, prostate, and ovarian carcinomas. According to the literature, SRC-3 is frequently amplified or overexpressed in a number of cancers (12), and SRC-1/PAX3 and SRC-2/MYST3 translocations are found associated with rhabdomyosarcoma and acute myeloid leukemia, respectively (13,14).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.