Interested in promotions? | Click here >>
9672
Acetyl-Histone H4 (Lys5) Antibody
Primary Antibodies
Polyclonal Antibody

Acetyl-Histone H4 (Lys5) Antibody #9672

Citations (20)

We recommend the following alternatives

# Product Name Application Reactivity
  • WB
  • IP
  • IHC
  • ChIP
H M R Mk
No image available

Supporting Data

REACTIVITY
SENSITIVITY
MW (kDa) 11
SOURCE Rabbit

Application Key:

  • W-Western
  • IP-Immunoprecipitation
  • IHC-Immunohistochemistry
  • ChIP-Chromatin Immunoprecipitation
  • IF-Immunofluorescence
  • F-Flow Cytometry
  • E-P-ELISA-Peptide

Species Cross-Reactivity Key:

  • H-Human
  • M-Mouse
  • R-Rat
  • Hm-Hamster
  • Mk-Monkey
  • Mi-Mink
  • C-Chicken
  • Dm-D. melanogaster
  • X-Xenopus
  • Z-Zebrafish
  • B-Bovine
  • Dg-Dog
  • Pg-Pig
  • Sc-S. cerevisiae
  • Ce-C. elegans
  • Hr-Horse
  • All-All Species Expected

Product Usage Information

For optimal ChIP results, use 20 μl of antibody and 10 μg of chromatin (approximately 4 x 106 cells) per IP. This antibody has been validated using SimpleChIP® Enzymatic Chromatin IP Kits.

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

Specificity / Sensitivity

Acetyl-Histone H4 (Lys5) Antibody detects endogenous levels of histone H4 only when acetylated on Lys5. This antibody does not cross-react with histone H4 acetylated on lysines 8, 12, or 16.

Species predicted to react based on 100% sequence homology:

Chicken, D. melanogaster, Xenopus, Zebrafish, Bovine, Pig, C. elegans, Horse

Source / Purification

Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to the amino terminus of histone H4 in which Lys5 is acetylated. Antibodies are purified by protein A and peptide affinity chromatography.

Background

The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1,2). Histone acetylation occurs mainly on the amino-terminal tail domains of histones H2A (Lys5), H2B (Lys5, 12, 15, and 20), H3 (Lys9, 14, 18, 23, 27, 36 and 56), and H4 (Lys5, 8, 12, and 16) and is important for the regulation of histone deposition, transcriptional activation, DNA replication, recombination, and DNA repair (1-3). Hyper-acetylation of the histone tails neutralizes the positive charge of these domains and is believed to weaken histone-DNA and nucleosome-nucleosome interactions, thereby destabilizing chromatin structure and increasing the accessibility of DNA to various DNA-binding proteins (4,5). In addition, acetylation of specific lysine residues creates docking sites for a protein module called the bromodomain, which binds to acetylated lysine residues (6). Many transcription and chromatin regulatory proteins contain bromodomains and may be recruited to gene promoters, in part, through binding of acetylated histone tails. Histone acetylation is mediated by histone acetyltransferases (HATs), such as CBP/p300, GCN5L2, PCAF, and Tip60, which are recruited to genes by DNA-bound protein factors to facilitate transcriptional activation (3). Deacetylation, which is mediated by histone deacetylases (HDAC and sirtuin proteins), reverses the effects of acetylation and generally facilitates transcriptional repression (7,8).

Histone H4 lysine 5 is acetylated by multiple HAT proteins. Acetylation by Esa1p in yeast, or Tip60 in mammalian cells, may contribute to both transcriptional activation and DNA repair, including non-homologous end joining and replication-coupled repair (9-12). Histone H4 lysine 5 is also acetylated by CBP/p300, a family of HAT proteins that function as transcriptional co-activators for a large number of transcription factors (13).

  1. Peterson, C.L. and Laniel, M.A. (2004) Curr Biol 14, R546-51.
  2. Jaskelioff, M. and Peterson, C.L. (2003) Nat Cell Biol 5, 395-9.
  3. Roth, S.Y. et al. (2001) Annu Rev Biochem 70, 81-120.
  4. Workman, J.L. and Kingston, R.E. (1998) Annu Rev Biochem 67, 545-79.
  5. Hansen, J.C. et al. (1998) Biochemistry 37, 17637-41.
  6. Yang, X.J. (2004) Bioessays 26, 1076-87.
  7. Haberland, M. et al. (2009) Nat Rev Genet 10, 32-42.
  8. Haigis, M.C. and Sinclair, D.A. (2010) Annu Rev Pathol 5, 253-95.
  9. Clarke, A.S. et al. (1999) Mol Cell Biol 19, 2515-26.
  10. Kimura, A. and Horikoshi, M. (1998) Genes Cells 3, 789-800.
  11. Bird, A.W. et al. (2002) Nature 419, 411-5.
  12. Ikura, T. et al. (2000) Cell 102, 463-73.
  13. Schiltz, R.L. et al. (1999) J Biol Chem 274, 1189-92.

Pathways & Proteins

Explore pathways + proteins related to this product.

Limited Uses

Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.

Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST's products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST's Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.

For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
To Purchase # 9672