Buy 3 Get a 4th Free* | Learn More >>
2966
Akt (5G3) Mouse mAb

Akt (5G3) Mouse mAb #2966

APPLICATIONS

REACTIVITY SENSITIVITY MW (kDa) Isotype
H M R Hm Endogenous 60 Mouse IgG1
IP

Immunoprecipitation of Akt from PDGF (100 ng/ml for 11 minutes) treated and untreated NIH/3T3 cell lysates, using

control Akt Antibody #9272 (left) and Akt (5G3) Mouse mAb (right). Western blot detection was performed using Akt Antibody #9272.

Learn more about how we get our images
IF-IC

Confocal immunofluorescence images of C2C12 cells showing nuclear and cytoplasmic localization with Akt (5G3) Mouse mAb (left, red) compared to an isotype control (right). Actin filaments have been labeled with fluorescein phalloidin.

Learn more about how we get our images
Flow Cytometry

Akt (5G3) mAb #2966 staining of untreated (blue) or LY294002-treated (green) jurkat cells compared to a nonspecific negative control antibody (red).

Learn more about how we get our images

Immunoprecipitation for Native Proteins

This protocol is intended for immunoprecipitation of native proteins for analysis by western immunoblot or kinase activity utilizing magnetic separation.

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L of 1X PBS, add 50 ml 20X PBS to 950 ml dH2O, mix.
  2. 10X Cell Lysis Buffer: (#9803) To prepare 10 ml of 1X cell lysis buffer, add 1 ml cell lysis buffer to 9 ml dH2O, mix.

    NOTE: Add 1 mM PMSF (#8553) immediately prior to use.

  3. 3X SDS Sample Buffer: Blue Loading Pack (#7722) or Red Loading Pack (#7723) Prepare fresh 3X reducing loading buffer by adding 1/10 volume 30X DTT to 1 volume of 3X SDS loading buffer.
  4. Protein G Magnetic Beads: Use Protein G (#70024) for mouse IgG immunoprecipitation.
  5. Magnetic Separation Rack: (#7017) or (#14654).
  6. 10X Kinase Buffer (for kinase assays): (#9802) To Prepare 1 ml of 1X kinase buffer, add 100 µl 10X kinase buffer to 900 µl dH2O, mix.
  7. ATP (10 mM) (for kinase assays): (#9804) To prepare 0.5 ml of ATP (200 µM), add 10 µl ATP (10 mM) to 490 µl 1X kinase buffer.

B. Preparing Cell Lysates

  1. Aspirate media. Treat cells by adding fresh media containing regulator for desired time.
  2. To harvest cells under nondenaturing conditions, remove media and rinse cells once with ice-cold 1X PBS.
  3. Remove PBS and add 0.5 ml ice-cold 1X cell lysis buffer to each plate (10 cm) and incubate on ice for 5 min.
  4. Scrape cells off the plate and transfer to microcentrifuge tubes. Keep on ice.
  5. Sonicate on ice three times for 5 sec each.
  6. Microcentrifuge for 10 min at 4°C, 14,000 x g and transfer the supernatant to a new tube. The supernatant is the cell lysate. If necessary, lysate can be stored at -80°C.

C. Immunoprecipitation

Cell Lysate Pre-Clearing (Highly Recommended)

A cell lysate pre-clearing step is highly recommended to reduce non-specific protein binding to the Protein G Magnetic beads. Pre-clear enough lysate for test samples and isotype controls.

  1. Briefly vortex the stock tube to resuspend the magnetic beads.
  2. IMPORTANT: Pre-wash #70024 magnetic beads just prior to use:

  3. Transfer 20 μl of bead slurry to a clean tube. Place the tube in a magnetic separation rack for 10-15 seconds.

    Carefully remove the buffer once the solution is clear. Add 500 μl of 1X cell lysis buffer to the magnetic bead pellet, briefly vortex to wash the beads. Place tube back in magnetic separation rack. Remove buffer once solution is clear. Repeat washing step once more.

  4. Add 200 μl cell lysate to 20 μl of pre-washed magnetic beads.

    IMPORTANT: The optimal lysate concentration will depend on the expression level of the protein of interest. A starting concentration between 250 μg/ml-1.0 mg/ml is recommended.

  5. Incubate with rotation for 20 minutes at room temperature.
  6. Separate the beads from the lysate using a magnetic separation rack, transfer the pre-cleared lysate to a clean tube, and discard the magnetic bead pellet.
  7. Proceed to immunoprecipitation section.

Immunoprecipitation

IMPORTANT: Appropriate isotype controls are highly recommended in order to show specific binding in your primary antibody immunoprecipitation. Use Normal Rabbit IgG #2729 for rabbit polyclonal primary antibodies, Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 for rabbit monoclonal primary antibodies, and Mouse (G3A1) mAb IgG1 Isotype Control #5415 for mouse monoclonal primary antibodies. Isotype controls should be concentration matched and run alongside the primary antibody samples.

  1. Add primary antibody (at the appropriate dilution as recommended in the product datasheet) to 200 µl cell lysate. Incubate with rotation overnight at 4°C to form the immunocomplex.
  2. Pre-wash magnetic beads (see Cell Lysate Pre-Clearing section, steps 1 and 2).
  3. Transfer the lysate and antibody (immunocomplex) solution to the tube containing the pre-washed magnetic bead pellet.
  4. Incubate with rotation for 20 min at room temperature.
  5. Pellet beads using magnetic separation rack. Wash pellets five times with 500 μl of 1X cell lysis buffer. Keep on ice between washes.
  6. Proceed to analyze by western immunoblotting or kinase activity (section D).

D. Sample Analysis

Proceed to one of the following specific set of steps.

For Analysis by Western Immunoblotting

  1. Resuspend the pellet with 20-40 µl 3X SDS sample buffer, briefly vortex to mix, and briefly microcentrifuge to pellet the sample.
  2. Heat the sample to 95-100°C for 5 min.
  3. Pellet beads using magnetic separation rack. Transfer the supernatant to a new tube. The supernatant is the sample.
  4. Load the sample (15-30 µl) on SDS-PAGE.
  5. Analyze sample by western blot (see Western Immunoblotting Protocol).

NOTE: For proteins with molecular weights in the range of around 50 kDa, we recommend using Mouse Anti-Rabbit IgG (Light-Chain Specific) (D4W3E) mAb (#45262) or Mouse Anti-Rabbit IgG (Conformation Specific) (L27A9) mAb (#3678) (or HRP conjugate #5127) as a secondary antibody to minimize interference produced by denatured heavy chains. For proteins with molecular weights in the range of around 25 kDa, Mouse Anti-Rabbit IgG (Conformation Specific) (L27A9) mAb (#3678) (or HRP conjugate #5127) is recommended to minimize interference produced by denatured light chains.

For Analysis by Kinase Assay

  1. Wash pellet twice with 500 µl 1X kinase buffer. Keep on ice.
  2. Suspend pellet in 40 µl 1X kinase buffer supplemented with 200 µM ATP and appropriate substrate.
  3. Incubate for 30 min at 30°C.
  4. Terminate reaction with 20 µl 3X SDS sample buffer. Vortex, then microcentrifuge for 30 sec.
  5. Transfer supernatant containing phosphorylated substrate to another tube.
  6. Heat the sample to 95-100°C for 2-5 min and microcentrifuge for 1 min at 14,000 x g.
  7. Load the sample (15-30 µl) on SDS-PAGE gel.

posted December 2008

revised October 2017

Protocol Id: 121

Immunofluorescence (Immunocytochemistry)

A. Solutions and Reagents

Achieve higher quality immunofluorescent images using the efficient and cost-effective, pre-made reagents in our #12727 Immunofluorescence Application Solutions Kit

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (9808) To prepare 1L 1X PBS: add 50 ml 20X PBS to 950 ml dH2O, mix. Adjust pH to 8.0.
  2. Formaldehyde: 16%, methanol free, Polysciences, Inc. (cat# 18814), use fresh and store opened vials at 4°C in dark, dilute in 1X PBS for use.
  3. Blocking Buffer: (1X PBS / 5% normal serum / 0.3% Triton™ X-100): To prepare 10 ml, add 0.5 ml normal serum from the same species as the secondary antibody (e.g., Normal Goat Serum (#5425) to 9 ml 1X PBS) and mix well. While stirring, add 30 µl Triton™ X-100.
  4. Antibody Dilution Buffer: (1X PBS / 1% BSA / 0.3% Triton™ X-100): To prepare 10 ml, add 30 µl Triton™ X-100 to 10 ml 1X PBS. Mix well then add 0.1 g BSA (#9998), mix.
  5. Recommended Fluorochrome-conjugated Anti-Mouse secondary antibodies:

  6. Prolong® Gold AntiFade Reagent (#9071), Prolong® Gold AntiFade Reagent with DAPI (#8961).

B. Specimen Preparation - Cultured Cell Lines (IF-IC)

NOTE: Cells should be grown, treated, fixed and stained directly in multi-well plates, chamber slides or on coverslips.

  1. Aspirate liquid, then cover cells to a depth of 2–3 mm with 4% formaldehyde diluted in 1X PBS.

    NOTE: Formaldehyde is toxic, use only in a fume hood.

  2. Allow cells to fix for 15 min at room temperature.
  3. Aspirate fixative, rinse three times in 1X PBS for 5 min each.
  4. Proceed with Immunostaining (Section C).

C. Immunostaining

NOTE: All subsequent incubations should be carried out at room temperature unless otherwise noted in a humid light-tight box or covered dish/plate to prevent drying and fluorochrome fading.

  1. Block specimen in Blocking Buffer for 60 min.
  2. While blocking, prepare primary antibody by diluting as indicated on datasheet in Antibody Dilution Buffer.
  3. Aspirate blocking solution, apply diluted primary antibody.
  4. Incubate overnight at 4°C.
  5. Rinse three times in 1X PBS for 5 min each.
  6. Incubate specimen in fluorochrome-conjugated secondary antibody diluted in Antibody Dilution Buffer for 1–2 hr at room temperature in the dark.
  7. Rinse three times in 1X PBS for 5 min each.
  8. Coverslip slides with Prolong® Gold Antifade Reagent (#9071) or Prolong® Gold Antifade Reagent with DAPI (#8961).
  9. For best results, allow mountant to cure overnight at room temperature. For long-term storage, store slides flat at 4°C protected from light.

posted November 2006

revised November 2013

Protocol Id: 148

Flow Cytometry, Methanol Permeabilization Protocol for Mouse Antibodies

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L 1X PBS: add 50 ml 20X PBS to 950 ml dH2O, mix.
  2. 16% Formaldehyde (methanol free).
  3. 100% methanol.
  4. Incubation Buffer: Dissolve 0.5 g Bovine Serum Albumin (BSA) (#9998) in 100 ml 1X PBS. Store at 4°C.
  5. Recommended Anti-Mouse secondary antibodies::

B. Fixation

NOTE: If using whole blood, lyse red blood cells and wash by centrifugation prior to fixation.

  1. Collect cells by centrifugation and aspirate supernatant.
  2. Resuspend cells in 0.5-1 ml 1X PBS. Add formaldehyde to obtain a final concentration of 4%.
  3. Fix for 15 min at room temperature.
  4. Wash by centrifugation with excess 1X PBS. Discard supernatant in appropriate waste container. Resuspend cells in 0.5-1 ml 1X PBS.

C. Permeabilization

  1. Permeabilize cells by adding ice-cold 100% methanol slowly to pre-chilled cells, while gently vortexing, to a final concentration of 90% methanol.
  2. Incubate 30 min on ice.
  3. Proceed with immunostaining (Section D) or store cells at -20°C in 90% methanol.

D. Immunostaining

NOTE: Count cells using a hemocytometer or alternative method.

  1. Aliquot desired number of cells into tubes or wells.
  2. Wash cells by centrifugation in excess 1X PBS to remove methanol. Discard supernatant in appropriate waste container. Repeat if necessary.
  3. Resuspend cells in 100 µl of diluted primary antibody (prepared in incubation buffer at the recommended dilution).
  4. Incubate for 1 hr at room temperature.
  5. Wash by centrifugation in incubation buffer. Discard supernatant. Repeat.
  6. Resuspend cells in 100 µl of diluted fluorochrome-conjugated secondary antibody (prepared in incubation buffer at recommended dilution).
  7. Incubate for 30 min at room temperature.
  8. Wash by centrifugation in incubation buffer. Discard supernatant. Repeat.
  9. Resuspend cells in 1X PBS and analyze on flow cytometer; alternatively, for DNA staining, proceed to optional DNA stain (Section E).

E. Optional DNA Dye

  1. Resuspend cells in 0.5 ml of DNA dye (e.g. Propidium Iodide (PI)/RNase Staining Solution #4087).
  2. Incubate for at least 5 min at room temperature.
  3. Analyze cells in DNA staining solution on flow cytometer.

posted June 2005

revised June 2017

Protocol Id: 406

Application Dilutions
Immunoprecipitation 1:100
Immunofluorescence (Immunocytochemistry) 1:50
Flow Cytometry 1:50
Storage:

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Akt (5G3) Mouse mAb detects endogenous levels of Akt1 and Akt3. This antibody does not cross-react with other related proteins.

Species Reactivity:

Human, Mouse, Rat, Hamster

Monoclonal antibody is produced by immunizing animals with an Akt1 recombinant protein containing human Akt1 residues 140-480.

Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

  1. Franke, T.F. et al. (1997) Cell 88, 435-7.
  2. Burgering, B.M. and Coffer, P.J. (1995) Nature 376, 599-602.
  3. Franke, T.F. et al. (1995) Cell 81, 727-36.
  4. Alessi, D.R. et al. (1996) EMBO J 15, 6541-51.
  5. Sarbassov, D.D. et al. (2005) Science 307, 1098-101.
  6. Jacinto, E. et al. (2006) Cell 127, 125-37.
  7. Cardone, M.H. et al. (1998) Science 282, 1318-21.
  8. Brunet, A. et al. (1999) Cell 96, 857-68.
  9. Zimmermann, S. and Moelling, K. (1999) Science 286, 1741-4.
  10. Cantley, L.C. and Neel, B.G. (1999) Proc Natl Acad Sci USA 96, 4240-5.
  11. Vlahos, C.J. et al. (1994) J Biol Chem 269, 5241-8.
  12. Hajduch, E. et al. (2001) FEBS Lett 492, 199-203.
  13. Cross, D.A. et al. (1995) Nature 378, 785-9.
  14. Diehl, J.A. et al. (1998) Genes Dev 12, 3499-511.
  15. Gesbert, F. et al. (2000) J Biol Chem 275, 39223-30.
  16. Zhou, B.P. et al. (2001) Nat Cell Biol 3, 245-52.
  17. Navé, B.T. et al. (1999) Biochem J 344 Pt 2, 427-31.
  18. Inoki, K. et al. (2002) Nat Cell Biol 4, 648-57.
  19. Manning, B.D. et al. (2002) Mol Cell 10, 151-62.
Entrez-Gene Id
207 , 10000
Swiss-Prot Acc.
P31749 , Q9Y243
For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.

Upstream / Downstream

pathwayImage

Explore pathways related to this product.