Buy Three, Get the Fourth Free! | Start Saving >>
8222
PhosphoPlus® c-Jun (Ser73) Antibody Duet
Primary Antibodies

PhosphoPlus® c-Jun (Ser73) Antibody Duet #8222

Western Blotting Image 1

Western blot analysis of extracts from NIH/3T3 or C6 cells, untreated or UV-treated, using Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb (upper) or c-Jun (60A8) Rabbit mAb #9165 (lower).

Learn more about how we get our images
Chromatin IP-seq Image 2

Chromatin immunoprecipitations were performed with cross-linked chromatin from PC-12 cells starved overnight and treated with Human β-Nerve Growth Factor (hβ-NGF) #5221 (50 ng/ml) for 2h and either Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb or c-Jun (60A8) Rabbit mAb #9165, using SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005. DNA Libraries were prepared using SimpleChIP® ChIP-seq DNA Library Prep Kit for Illumina® #56795. The figure shows binding across Dclk1, a known target gene of both Phospho-c-Jun and c-Jun (see additional figures containing ChIP-qPCR data). For additional ChIP-seq tracks, please download the product data sheet.

Learn more about how we get our images
Chromatin IP-seq Image 3

Chromatin immunoprecipitations were performed with cross-linked chromatin from PC-12 cells starved overnight and treated with β-NGF #5221 (50ng/ml) for 2h and c-Jun (60A8) Rabbit mAb, using SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005. DNA Libraries were prepared using SimpleChIP® ChIP-seq DNA Library Prep Kit for Illumina® #56795. The figure shows binding across Dclk1, a known target gene of c-Jun (see additional figure containing ChIP-qPCR data). For additional ChIP-seq tracks, please download the product data sheet.

Learn more about how we get our images
Western Blotting Image 4

Western blot analysis of extracts from NIH/3T3 and SK-N-MC cells, untreated or UV-treated, using c-Jun (60A8) Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 5

Immunohistochemical analysis of paraffin-embedded human breast carcinoma, control (left) or lambda phosphatase-treated (right), using Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 6

Immunohistochemical analysis of paraffin-embedded human astrocytoma, using c-Jun (60A8) Rabbit mAb.

Learn more about how we get our images
Chromatin IP Image 7

Chromatin immunoprecipitations were performed with cross-linked chromatin from PC-12 cells starved overnight and treated with β-NGF #5221 (50ng/ml) for 2h and either of c-Jun (60A8) Rabbit mAb or Normal Rabbit IgG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using SimpleChIP® Rat CCRN4L Promoter Primers #7983, rat DCLK1 promoter primers, and SimpleChIP® Rat GAPDH Promoter Primers #7964. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin, which is equivalent to one.

Learn more about how we get our images
IHC-P (paraffin) Image 8

Immunohistochemical analysis of parafin-embedded human colon carcinoma using Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb in the presence of control peptide (left) or Phospho-c-Jun (Ser73) Blocking Peptide (right).

Learn more about how we get our images
IHC-P (paraffin) Image 9

Immunohistochemical analysis of paraffin-embedded human colon carcinoma, using c-Jun (60A8) Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 10

Immunohistochemical analysis of paraffin-embedded human lung carcinoma using Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 11

Immunohistochemical analysis of paraffin-embedded human ovarian carcinoma, using c-Jun (60A8) Rabbit mAb.

Learn more about how we get our images
Flow Cytometry Image 12

Flow cytometric analysis of HeLa cells, untreated (blue) or UV treated (green), using Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb.

Learn more about how we get our images
Flow Cytometry Image 13

Flow cytometric analysis of Jurkat cells using c-Jun (60A8) Rabbit mAb (solid line) compared to concentration-matched Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (dashed line). Anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 488 Conjugate) #4412 was used as a secondary antibody.

Learn more about how we get our images
IF-IC Image 14

Confocal immunofluorescent analysis of HeLa cells, untreated (left) or anisomycin-treated (right), using Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb (green). Actin filaments have been labeled with DY-554 phalloidin (red).

Learn more about how we get our images
IF-IC Image 15

Confocal immunofluorescent analysis of HeLa cells, using c-Jun (60A8) Rabbit mAb (green). Actin filaments have been labeled with Alexa Fluor® 555 phalloidin (red).

Learn more about how we get our images
Chromatin IP Image 16

Chromatin immunoprecipitations were performed with cross-linked chromatin from cells starved overnight and treated with Human β-Nerve Growth Factor (hβ-NGF) #5221 (50 ng/ml) for 2h and either Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb or Normal Rabbit IgG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR SimpleChIP® using Rat CCRN4L Promoter Primers #7983, rat DCLK1 promoter primers, and SimpleChIP® Rat GAPDH Promoter Primers #7964. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin, which is equivalent to one.

Learn more about how we get our images
Product Includes Quantity Applications Reactivity MW(kDa) Isotype
Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb 3270 100 µl
  • WB
  • IP
  • IHC
  • IF
  • F
  • ChIP
H M R Mk Pg 48 Rabbit IgG
c-Jun (60A8) Rabbit mAb 9165 100 µl
  • WB
  • IP
  • IHC
  • IF
  • F
  • ChIP
H M R Mk 43, 48 Rabbit IgG

PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.

c-Jun is a member of the Jun family containing c-Jun, JunB, and JunD, and is a component of the transcription factor activator protein-1 (AP-1). AP-1 is composed of dimers of Fos, Jun, and ATF family members and binds to and activates transcription at TRE/AP-1 elements (reviewed in 1). Extracellular signals including growth factors, chemokines, and stress activate AP-1-dependent transcription. The transcriptional activity of c-Jun is regulated by phosphorylation at Ser63 and Ser73 through SAPK/JNK (reviewed in 2). Knock-out studies in mice have shown that c-Jun is essential for embryogenesis (3), and subsequent studies have demonstrated roles for c-Jun in various tissues and developmental processes including axon regeneration (4), liver regeneration (5), and T cell development (6). AP-1 regulated genes exert diverse biological functions including cell proliferation, differentiation, and apoptosis, as well as transformation, invasion and metastasis, depending on cell type and context (7-9). Other target genes regulate survival, as well as hypoxia and angiogenesis (8,10). Research studies have implicated c-Jun as a promising therapeutic target for cancer, vascular remodeling, acute inflammation, and rheumatoid arthritis (11,12).

  1. Jochum, W. et al. (2001) Oncogene 20, 2401-12.
  2. Davis, R.J. (2000) Cell 103, 239-52.
  3. Hilberg, F. et al. (1993) Nature 365, 179-81.
  4. Raivich, G. et al. (2004) Neuron 43, 57-67.
  5. Behrens, A. et al. (2002) EMBO J 21, 1782-90.
  6. Riera-Sans, L. and Behrens, A. (2007) J Immunol 178, 5690-700.
  7. Leppä, S. and Bohmann, D. (1999) Oncogene 18, 6158-62.
  8. Shaulian, E. and Karin, M. (2002) Nat Cell Biol 4, E131-6.
  9. Weiss, C. and Bohmann, D. (2004) Cell Cycle 3, 111-3.
  10. Karamouzis, M.V. et al. (2007) Mol Cancer Res 5, 109-20.
  11. Kim, S. and Iwao, H. (2003) J Pharmacol Sci 91, 177-81.
  12. Dass, C.R. and Choong, P.F. (2008) Pharmazie 63, 411-4.
Entrez-Gene Id
3725
Swiss-Prot Acc.
P05412
For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
PhosphoPlus is a trademark of Cell Signaling Technology, Inc.
U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.

Upstream / Downstream

pathwayImage

Explore pathways related to this product.