Render Target: STATIC
Render Timestamp: 2024-10-15T09:56:16.471Z
Commit: 56767fe525c928647c8401233a175d0d607d385d
XML generation date: 2024-08-01 15:24:41.659
Product last modified at: 2024-08-20T12:15:17.810Z
1% for the planet logo
PDP - Template Name: Polyclonal Antibody
PDP - Template ID: *******59c6464

DBC1 Antibody #5693

Filter:
  • WB
  • IP
  • IF

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 130
    SOURCE Rabbit
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    • IF-Immunofluorescence 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:50
    Immunofluorescence (Immunocytochemistry) 1:100

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    DBC1 Antibody detects endogenous levels of total DBC1 protein.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    The antigen sequence used to produce this antibody shares 100% sequence homology with the species listed here, but reactivity has not been tested or confirmed to work by CST. Use of this product with these species is not covered under our Product Performance Guarantee.

    Species predicted to react based on 100% sequence homology:

    Horse

    Source / Purification

    Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues near the amino terminus of human DBC1 protein. Antibodies are purified by protein A and peptide affinity chromatography.

    Background

    Deleted in breast cancer gene 1 protein (DBC1) was originally identified by its localization to a region of chromosome 8p21 that is homozygously deleted in breast cancer (1). DBC1 is a large, nuclear protein with multiple functions in cell survival. It binds directly to the estrogen receptor α (ERα) hormone-binding domain in a ligand-independent manner and may be a key determinant of ligand-independent ERα expression and survival in human breast cancer cells (2). DBC1 can promote p53-mediated apoptosis by binding to and inhibiting the deacetylase activity of SirT1, resulting in increased p53 acetylation levels and activity (3). DBC1 may be an important regulator of heterochromatin formation as it binds SUV39H1 and inhibits its histone methyltransferase activity (4). Caspase-dependent processing activates the pro-apoptotic activity of DBC1 during Tumor Necrosis Factor-α (TNF-α)-mediated cell death signaling (5). This processing of DBC1 in response to TNF-α is an early event in the onset of apoptosis and results in relocalization of DBC1 to the cytoplasm. Overexpression of the processed, cytoplasmic form of DBC1 results in mitochondrial clustering and matrix condensation and sensitizes cells to TNF-α-mediated apoptosis.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.