Render Target: STATIC
Render Timestamp: 2024-10-09T10:47:27.804Z
Commit: f04ddd7fea9fb3592f59f61482fcb94610d25cbe
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77

eIF4H (D85F2) XP® Rabbit mAb #3469

Filter:
  • WB
  • IP
  • IF

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 25, 27
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    • IF-Immunofluorescence 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:50
    Immunofluorescence (Immunocytochemistry) 1:200 - 1:800

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    eIF4H (D85F2) XP® Rabbit mAb detects endogenous levels of total eIF4H protein.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to the sequence of human eIF4H.

    Background

    A variety of factors contribute to the initiation of translation. Eukaryotic translation initiation factor 4H (eIF4H) was purified to near homogeneity from rabbit reticulocyte lysate and shown to stimulate translation in an assay deficient in eIF4F and eIF4B (1). eIF4H induces the RNA-dependent ATP hydrolysis catalyzed by the initiation factors eIF4A and eIF4B (1,2). eIF4H was further shown to stimulate the initial rate and extent of eIF4A-mediated mRNA secondary structure unwinding (3). Interaction between eIF4H and the herpes simplex virus shutoff protein (Vhs) appears to be important for Vhs-mediated degradation of mRNA (4). Deletion of a large region of chromosome 7, including the corresponding eIF4H gene, results in Williams-Beuren Syndrome (WBS), an autosomal dominant disorder that can present with cardiovascular problems, mental retardation and distinctive facial features (5).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.