Render Target: STATIC
Render Timestamp: 2024-09-13T10:53:24.588Z
Commit: 78210eeeea5b845c078d553d401bea8346e49321
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

IGFBP7 (E8R2V) Rabbit mAb #64563

Filter:
  • WB

    Supporting Data

    REACTIVITY H M
    SENSITIVITY Endogenous
    MW (kDa) 32
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    IGFBP7 (E8R2V) Rabbit mAb recognizes endogenous levels of total IGFBP7 protein.

    Species Reactivity:

    Human, Mouse

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Glu241 of human IGFBP7 protein.

    Background

    IGFBP7 (also known as Mac25, TAF, or IGFBP-rP1) belongs to the IGFBP superfamily, which plays an integral role in regulating insulin-like growth factor (IGF) actions in a wide variety of cell types. There are six known high-affinity IGF binding family members (IGFBP1-6), and ten low-affinity IGF binding members. These family members are structurally related, but encoded by distinct genes (1,2). IGFBP7 is a low-affinity IGF binding protein (1). The protein functions through its binding to secreted growth factors including IGF1, insulin, and activin (3,4). IGFBP7 levels have been related to cancer development and tissue injury. Loss of expression of IGFBP7 has been associated with poor survival in multiple cancer types (5,6) and with tumor chemotherapy resistance (7,8). IGFBP7 also has been identified as a cell cycle arrest biomarker for human acute kidney injury (AKI) and serves as a prognostic indicator for early stage AKI development (9-11).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.