Upstream / Downstream

pathwayImage

Explore pathways related to this product.

Questions?

Find answers on our FAQs page.

ANSWERS  

PhosphoSitePlus® Resource

  • Additional protein information
  • Analytical tools

LEARN MORE

Product Includes Quantity Applications Reactivity MW(kDa) Isotype
Tri-Methyl-Histone H3 (Lys4) (C42D8) Rabbit mAb 9751 20 µl
Western Blotting Immunohistochemistry Immunofluorescence Flow Cytometry Chromatin Immunoprecipitation
H M R Mk Dm Sc 17 Rabbit IgG
Di-Methyl-Histone H3 (Lys4) (C64G9) Rabbit mAb 9725 20 µl
Western Blotting Immunoprecipitation Immunohistochemistry Immunofluorescence Chromatin Immunoprecipitation
H M R Mk 17 Rabbit IgG
Mono-Methyl-Histone H3 (Lys4) (D1A9) XP® Rabbit mAb 5326 20 µl
Western Blotting Immunofluorescence Chromatin Immunoprecipitation
H M R Mk 17 Rabbit IgG
Histone H3 (D1H2) XP® Rabbit mAb 4499 20 µl
Western Blotting Immunohistochemistry Immunofluorescence Flow Cytometry
H M R Mk 17 Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl
Western Blotting
Goat 

Product Description

The Methyl-Histone H3 (Lys4) Antibody Sampler Kit provides an economical means of detecting levels of mono-, di-, and tri-methyl histone H3 Lys4 using methyl-specific and control histone H3 antibodies. The kit contains enough primary antibodies to perform at least two western blot experiments.


Specificity / Sensitivity

Each antibody in the Methyl-Histone H3 (Lys4) Antibody Sampler Kit detects endogenous levels of its target protein. Tri-Methyl-Histone H3 (Lys4) (C42D8) Rabbit mAb detects endogenous levels of histone H3 when tri-methylated on Lys4. This antibody shows some cross-reactivity with histone H3 that is di-methylated on Lys4, but does not cross-react with non-methylated or mono-methylated histone H3 Lys4. Di-Methyl-Histone H3 (Lys4) (C64G9) Rabbit mAb detects endogenous levels of histone H3 when di-methylated on Lys4. This antibody shows weak cross-reactivity with histone H3 that is mono-methylated on Lys4 but does not cross-react with non-methylated or tri-methylated histone H3 Lys4. Mono-Methyl-Histone H3 (Lys4) (D1A9) XP® Rabbit mAb detects endogenous levels of histone H3 only when mono-methylated on Lys4. Histone H3 (D1H2) XP® Rabbit mAb detects endogenous levels of total Histone H3 protein, including isoforms H3.1, H3.2, H3.3, and the variant histone CENP-A. This antibody does not cross-react with other core histones.


Source / Purification

Monoclonal methyl-histone H3 Lys4 antibodies are produced by immunizing rabbits with synthetic peptides corresponding to the amino terminus of histone H3 in which Lys4 is mono-, di-, or tri-methylated. The control histone H3 monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to the carboxy terminus of the human histone H3 protein.

The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).


Methylation of histone H3 Lys4 is associated with transcriptional activation. Mono-methyl-histone H3 Lys4 levels are high at trancriptional enhancer elements, with lower levels of mono-methylation found at the promoters of active genes. Tri-methyl-histone H3 Lys4 levels are high at the promoters of active genes, in addition to bivalent, transcriptionally poised genes that also contain the repressive tri-methyl-histone H3 Lys27 modification. Di-methyl-histone H3 Lys4 levels are highest in the 5'-end of transcriptionally active genes.


1.  Peterson, C.L. and Laniel, M.A. (2004) Curr Biol 14, R546-51.

2.  Kubicek, S. et al. (2006) Ernst Schering Res Found Workshop , 1-27.

3.  Lin, W. and Dent, S.Y. (2006) Curr Opin Genet Dev 16, 137-42.

4.  Lee, D.Y. et al. (2005) Endocr Rev 26, 147-70.

5.  Daniel, J.A. et al. (2005) Cell Cycle 4, 919-26.

6.  Shi, X. et al. (2006) Nature 442, 96-9.

7.  Wysocka, J. et al. (2006) Nature 442, 86-90.

8.  Wysocka, J. et al. (2005) Cell 121, 859-72.

9.  Trojer, P. and Reinberg, D. (2006) Cell 125, 213-7.


Entrez-Gene Id 8350
Swiss-Prot Acc. P68431


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
XP is a registered trademark of Cell Signaling Technology, Inc.

26482
Methyl-Histone H3 (Lys4) Antibody Sampler Kit