REACTIVITY | SENSITIVITY | MW (kDa) | Isotype |
---|---|---|---|
H | Endogenous | 80 | Rabbit IgG |
Western blot analysis of extracts from various cell lines using MLL2/KMT2B (D6X2E) Rabbit mAb (Carboxy-terminal Antigen) (upper) and α-Actinin (D6F6) XP® Rabbit mAb #6487 (lower). As expected, HCT 116 cells are negative for MLL2 expression.
Learn more about how we get our imagesImmunoprecipitation of MLL2/KMT2B from NCCIT cell extracts. Lane 1 is 10% input, lane 2 is Rabbit (DA1E) mAb IgG XP® Isotype Control #3900, and lane 3 is MLL2/KMT2B (D6X2E) Rabbit mAb (Carboxy-terminal Antigen). Western blot analysis was performed using MLL2/KMT2B (D6X2E) Rabbit mAb (Carboxy-terminal Antigen).
Learn more about how we get our imagesConfocal immunofluorescent analysis of A549 cells (left, positive) and HCT 116 cells (right, negative) using MLL2/KMT2B (D6X2E) Rabbit mAb (Carboxy-terminal Antigen) (green). Actin filaments were labeled with DyLight™ 554 Phalloidin #13054 (red).
Learn more about how we get our imagesFor western blots, incubate membrane with diluted primary antibody in 5% w/v BSA, 1X TBS, 0.1% Tween® 20 at 4°C with gentle shaking, overnight.
NOTE: Please refer to primary antibody datasheet or product webpage for recommended antibody dilution.
From sample preparation to detection, the reagents you need for your Western Blot are now in one convenient kit: #12957 Western Blotting Application Solutions Kit
NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.
Load 20 µl onto SDS-PAGE gel (10 cm x 10 cm).
NOTE: Loading of prestained molecular weight markers (#13953, 5 µl/lane) to verify electrotransfer and biotinylated protein ladder (#7727, 10 µl/lane) to determine molecular weights are recommended.
NOTE: Volumes are for 10 cm x 10 cm (100 cm2) of membrane; for different sized membranes, adjust volumes accordingly.
* Avoid repeated exposure to skin.
posted June 2005
revised November 2013
Reprobing of an existing membrane is a convenient means to immunoblot for multiple proteins independently when only a limited amount of sample is available. It should be noted that for the best possible results a fresh blot is always recommended. Reprobing can be a valuable method but with each reprobing of a blot there is potential for increased background signal. Additionally, it is recommended that you verify the removal of the first antibody complex prior to reprobing so that signal attributed to binding of the new antibody is not leftover signal from the first immunoblotting experiment. This can be done by re-exposing the blot to ECL reagents and making sure there is no signal prior to adding the next primary antibody.
NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalently purified water.
posted June 2005
revised October 2016
Protocol Id: 10
This protocol is intended for immunoprecipitation of native proteins for analysis by western immunoblot or kinase activity utilizing magnetic separation.
NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.
10X Cell Lysis Buffer: (#9803) To prepare 10 ml of 1X cell lysis buffer, add 1 ml cell lysis buffer to 9 ml dH2O, mix.
NOTE: Add 1 mM PMSF (#8553) immediately prior to use.
A cell lysate pre-clearing step is highly recommended to reduce non-specific protein binding to the Protein A Magnetic beads. Pre-clear enough lysate for test samples and isotype controls.
IMPORTANT: Pre-wash #73778 magnetic beads just prior to use:
Carefully remove the buffer once the solution is clear. Add 500 μl of 1X cell lysis buffer to the magnetic bead pellet, briefly vortex to wash the beads. Place tube back in magnetic separation rack. Remove buffer once solution is clear. Repeat washing step once more.
IMPORTANT: The optimal lysate concentration will depend on the expression level of the protein of interest. A starting concentration between 250 μg/ml-1.0 mg/ml is recommended.
IMPORTANT: Appropriate isotype controls are highly recommended in order to show specific binding in your primary antibody immunoprecipitation. Use Normal Rabbit IgG #2729 for rabbit polyclonal primary antibodies, Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 for rabbit monoclonal primary antibodies, and Mouse (G3A1) mAb IgG1 Isotype Control #5415 for mouse monoclonal primary antibodies. Isotype controls should be concentration matched and run alongside the primary antibody samples
Proceed to one of the following specific set of steps.
NOTE: To minimize masking caused by denatured IgG heavy chains (~50 kDa), we recommend using Mouse Anti-Rabbit IgG (Light-Chain Specific) (D4W3E) mAb (#45262) or Mouse Anti-Rabbit IgG (Conformation Specific) (L27A9) mAb (#3678) (or HRP conjugate #5127). To minimize masking caused by denatured IgG light chains (~25 kDa), we recommend using Mouse Anti-Rabbit IgG (Conformation Specific) (L27A9) mAb (#3678) (or HRP conjugate #5127).
posted December 2008
revised October 2017
Protocol Id: 410
Achieve higher quality immunofluorescent images using the efficient and cost-effective, pre-made reagents in our #12727 Immunofluorescence Application Solutions Kit
NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.
Recommended Fluorochrome-conjugated Anti-Rabbit secondary antibodies:
NOTE: Cells should be grown, treated, fixed and stained directly in multi-well plates, chamber slides or on coverslips.
Aspirate liquid, then cover cells to a depth of 2–3 mm with 4% formaldehyde diluted in 1X PBS.
NOTE: Formaldehyde is toxic, use only in a fume hood.
NOTE: All subsequent incubations should be carried out at room temperature unless otherwise noted in a humid light-tight box or covered dish/plate to prevent drying and fluorochrome fading.
posted November 2006
revised November 2013
Protocol Id: 24
Application | Dilutions |
---|---|
Western Blotting | 1:1000 |
Immunoprecipitation | 1:50 |
Immunofluorescence (Immunocytochemistry) | 1:1000 |
Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.
MLL2/KMT2B (D6X2E) Rabbit mAb (Carboxy-terminal Antigen) recognizes endogenous levels of total MLL2 protein.
Human
Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy terminus of human MLL2/KMT2B protein. This antibody detects the full-length 600 kDa MLL2/KMT2B protein and the Taspase 1-cleaved 80 kDa C-terminal MLL2/KMT2B protein (MLL2/KMT2B-C).
The Set1 histone methyltransferase protein was first identified in yeast as part of the Set1/COMPASS histone methyltransferase complex, which methylates histone H3 at Lys4 and functions as a transcriptional co-activator (1). While yeast contain only one known Set1 protein, mammals contain six Set1-related proteins: SET1A, SET1B, MLL1, MLL2, MLL3, and MLL4, all of which assemble into COMPASS-like complexes and methylate histone H3 at Lys4 (2,3). These Set1-related proteins are each found in distinct protein complexes, all of which share the common subunits WDR5, RBBP5, ASH2L, CXXC1, and DPY30, which are required for proper complex assembly and modulation of histone methyltransferase activity (2-6). MLL1 and MLL2 complexes contain the additional protein subunit, menin (6).
MLL2, also known as histone-lysine N-methyltransferase 2B (KMT2B), functions to activate gene expression by mediating tri-methylation of histone H3 lysine 4 at the promoters of genes involved in embryogenesis and hematopoiesis, and is required for histone H3 lysine 4 tri-methylation at bivalent promoters in embryonic stem cells (7). Like MLL1, MLL2 is a large protein made up of approximately 2700 amino acids that is cleaved by the Taspase 1 threonine endopeptidase to form N-terminal (MLL2-N) and C-terminal (MLL2-C) fragments, both of which are subunits of the functional MLL2/COMPASS complex. MLL2-N, MLL2-C, WDR5, RBBP5, and ASH2L define the core catalytic component of the MLL2/COMPASS complex, which is recruited to target genes to regulate transcription. MLL1 gene translocations are often associated with various hematological malignancies and thought to be a driving component of these types of leukemia. MLL2 is required for memory formation, proper glucose homeostasis, and cardiac lineage differentiation of mouse embryonic stem cells (8-11). A recent study has shown that MLL2 is required for survival of MLL-AF9-transformed cells, implicating MLL2 as a potential modulator of MLL1-rearranged leukemias (12). Mutations in MLL2 cause complex early-onset dystonia, and overexpression of MLL2 is associated with gastrointestinal diffuse large B-cell lymphoma (13,14).
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc. XP is a registered trademark of Cell Signaling Technology, Inc. DyLight is a trademark of Thermo Fisher Scientific, Inc. and its subsidiaries. Tween is a registered trademark of ICI Americas, Inc.
Explore pathways related to this product.
Product # | Size | Price |
---|---|---|
63735S | 100 µl (10 western blots) | $ 255.0 |