Cell Signaling Technology Logo
1% for the planet logo
Trial Size Available Flag
Recombinant Flag
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

NLK (D9X3C) Rabbit mAb #94350

Filter:
  • WB

    Supporting Data

    REACTIVITY H M R
    SENSITIVITY Endogenous
    MW (kDa) 58
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    NLK (D9X3C) Rabbit mAb recognizes endogenous levels of total NLK protein.

    Species Reactivity:

    Human, Mouse, Rat

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the amino terminus of human NLK protein.

    Background

    Nemo-like kinase (NLK ) is a serine/threonine-protein kinase that regulates multiple signaling pathways, including Wnt/β-catenin, TGFβ, IL-6, and Notch (1-4). NLK contributes to cell proliferation, differentiation, cell fate determination during early embryogenesis and nervous system development in vertebrates (5-7). Recent studies showed that NLK is aberrantly expressed in various types of cancer where it regulates cancer cell proliferation, migration, invasion and survival (8-11). NLK is localized predominantly in nucleus and at a lower level in cytoplasm(12). Homodimerization of NLK is required for its activation and nuclear localization. NLK is activated via intermolecular autophosphorylation at Thr286 (13). NLK interacts with and phosphorylates a number of transcription factors including FOXO1, FOXO4, MYB, NOTCH1 and TCF7L2/TCF4, and LEF-1/TCF (14-18). NLK also associates with E3 ubiquitin ligase NARF and Raptor and regulates their function (19,20).
    1. Smit, L. et al. (2004) J Biol Chem 279, 17232-40.
    2. Ohkawara, B. et al. (2004) Genes Dev 18, 381-6.
    3. Kojima, H. et al. (2005) Proc Natl Acad Sci U S A 102, 4524-9.
    4. Ishitani, T. et al. (2010) Nat Cell Biol 12, 278-85.
    5. Hyodo-Miura, J. et al. (2002) Genes Cells 7, 487-96.
    6. Thorpe, C.J. and Moon, R.T. (2004) Development 131, 2899-909.
    7. Satoh, K. et al. (2007) Mol Cell Biol 27, 7623-30.
    8. Li, M. et al. (2013) Tumour Biol 34, 3995-4000.
    9. Lv, L. et al. (2014) J Cell Biochem 115, 81-92.
    10. Huang, Y. et al. (2013) PLoS One 8, e69148.
    11. Dong, J.R. et al. (2013) Asian Pac J Cancer Prev 14, 7137-41.
    12. Brott, B.K. et al. (1998) Proc Natl Acad Sci U S A 95, 963-8.
    13. Ishitani, S. et al. (2011) Mol Biol Cell 22, 266-77.
    14. Ishitani, T. et al. (2003) Mol Cell Biol 23, 1379-89.
    15. Kanei-Ishii, C. et al. (2004) Genes Dev 18, 816-29.
    16. Kim, S. et al. (2010) J Biol Chem 285, 8122-9.
    17. Togi, S. et al. (2011) J Biol Chem 286, 19170-7.
    18. Szypowska, A.A. et al. (2011) Antioxid Redox Signal 14, 563-78.
    19. Yamada, M. et al. (2006) J Biol Chem 281, 20749-60.
    20. Yuan, H.X. et al. (2015) Genes Dev 29, 2362-76.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.