Render Target: STATIC
Render Timestamp: 2024-10-04T10:08:43.236Z
Commit: f04ddd7fea9fb3592f59f61482fcb94610d25cbe
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

NQO1 (D6H3A) Rabbit mAb #62262

Filter:
  • WB
  • IF

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa) 29
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IF-Immunofluorescence 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunofluorescence (Immunocytochemistry) 1:100 - 1:200

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    NQO1 (D6H3A) Rabbit mAb recognizes endogenous levels of total NQO1 protein.

    Species Reactivity:

    Human

    The antigen sequence used to produce this antibody shares 100% sequence homology with the species listed here, but reactivity has not been tested or confirmed to work by CST. Use of this product with these species is not covered under our Product Performance Guarantee.

    Species predicted to react based on 100% sequence homology:

    Mouse, Rat

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Leu228 of human NQO1 protein.

    Background

    NAD(P)H:quinone oxidoreductase 1 (NQO1) is a flavoprotein that catalyzes the two-electron reduction of quinones and their derivatives (1,2). This enzyme protects cells against redox cycling and oxidative stress (1,3). The expression of NQO1 is increased in liver, colon and breast tumors and non-small cell lung cancer (NSCLC) compared with the normal tissues (1,2). Moreover, expression levels are also elevated in developing tumors, suggesting a role for NQO1 in the prevention of tumor development (1). Studies on NQO1 knockout mice suggest that the lack of NQO1 enzymatic activity changes intracellular redox states resulting in a reduction in apoptosis, which in turn leads to myeloid hyperplasia of bone marrow (2).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.