Render Target: STATIC
Render Timestamp: 2024-10-04T09:52:05.879Z
Commit: f04ddd7fea9fb3592f59f61482fcb94610d25cbe
1% for the planet logo
PDP - Template Name: Polyclonal Antibody
PDP - Template ID: *******59c6464

p47phox Antibody #4312

Filter:
  • WB
  • IP

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa) 47
    SOURCE Rabbit
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:50

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    p47phox Antibody detects endogenous levels of total p47phox protein.

    Species Reactivity:

    Human

    The antigen sequence used to produce this antibody shares 100% sequence homology with the species listed here, but reactivity has not been tested or confirmed to work by CST. Use of this product with these species is not covered under our Product Performance Guarantee.

    Species predicted to react based on 100% sequence homology:

    Monkey

    Source / Purification

    Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Arg292 of human p47phox. Antibodies are purified by peptide affinity chromatography

    Background

    The phagocytic NADPH oxidase is a multiprotein enzyme that catalyzes the reduction of oxygen to superoxide in response to pathogenic invasion. The NADPH oxidase consists of 6 subunits, including the membrane-bound p91 phox and p22 phox heterodimers (also known as cytochrome b558), the cytosolic complex of p40phox, p47phox and p67phox, and the small GTPase Rac2. Activation of NADPH oxidase is initiated by cytosolic complex phosphorylation, which induces a conformational change that leads to the translocation of the cytosolic complex to the membrane and formation of an active enzyme with cytochrome b558 (1). Defects in p47phox, often resulting from recombination between p47phox and a nearby homologous pseudogene, cause chronic granulomatous disease (2-4). Elevated oxidative stress due to increased myocardial NADPH oxidase activity may be a contributing factor in heart failure (5,6).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.