Render Target: STATIC
Render Timestamp: 2025-02-19T10:57:57.024Z
Commit: 7500bcdc731e9059bbdfbdbe9e72caa896e426e8
XML generation date: 2024-08-30 10:37:11.662
Product last modified at: 2025-01-01T09:04:17.503Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

PBRM1/BAF180 (D4L9X) Rabbit mAb (BSA and Azide Free) #68379

Filter:
  • WB
  • IHC

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 205
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IHC-Immunohistochemistry 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    This product is the carrier free version of product #38439. All data were generated using the same antibody clone in the standard formulation which contains BSA and glycerol.

    This formulation is ideal for use with technologies requiring specialized or custom antibody labeling, including fluorophores, metals, lanthanides, and oligonucleotides. It is not recommended for ChIP, ChIP-seq, CUT&RUN or CUT&Tag assays. If you require a carrier free formulation for chromatin profiling, please contact us. Optimal dilutions/concentrations should be determined by the end user.

    BSA and Azide Free antibodies are quality control tested by size exclusion chromatography (SEC) to determine antibody integrity.

    Formulation

    Supplied in 1X PBS (10 mM Na2HPO4, 3 mM KCl, 2 mM KH2PO4, and 140 mM NaCl (pH 7.8)). BSA and Azide Free.

    For standard formulation of this product see product #38439

    Storage

    Store at -20°C. This product will freeze at -20°C so it is recommended to aliquot into single-use vials to avoid multiple freeze/thaw cycles. A slight precipitate may be present and can be dissolved by gently vortexing. This will not interfere with antibody performance.

    Specificity / Sensitivity

    PBRM1/BAF180 (D4L9X) Rabbit mAb (BSA and Azide Free) recognizes endogenous levels of total PBRM1/BAF180 protein. Reactivity for immunohistochemistry is human only.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with recombinant protein specific to the amino terminus of human PBRM1/BAF180 protein.

    Background

    ATP-dependent chromatin remodeling complexes play an essential role in the regulation of various nuclear processes, such as gene expression, DNA replication, and repair (1,2). The SWI/SNF chromatin remodeling complex consists of more than 10 subunits with a single molecule of the ATPase catalytic subunit BRM or BRG1, but not both. The activities of these two subunits drive the disruption of histone-DNA contacts that lead to changes in accessibility of crucial regulatory elements within chromatin (2-5). The BRM/BRG1 containing SWI/SNF complexes are recruited to target promoters by transcription factors, such as nuclear receptors, p53, RB, and BRCA1 to regulate gene activation, cell growth, the cell cycle, and differentiation processes (1,6-9).

    PBRM1/BAF180 is a unique member of the SWI/SNF complex PBAF, which binds to kinetochores in mitotic chromatin (10,11). PBAF is involved in nuclear receptor-mediated transcription and retinoic acid driven gene activation (12,13). PBRM1/BAF180 has been shown to be a potent tumor suppressor, as it is the second-most mutated gene in renal carcinomas (14). Mutations of PBRM1/BAF180 have also been shown to be involved in breast cancer, and low expression relates to poorer prognosis (15,16). PBRM1/BAF180 is phosphorylated at Ser948 by ATM during DNA damage, which is important for transcriptional silencing and repair around double-stranded breaks (17).
    1. Ho, L. and Crabtree, G.R. (2010) Nature 463, 474-84.
    2. Becker, P.B. and Hörz, W. (2002) Annu Rev Biochem 71, 247-73.
    3. Eberharter, A. and Becker, P.B. (2004) J Cell Sci 117, 3707-11.
    4. Bowman, G.D. (2010) Curr Opin Struct Biol 20, 73-81.
    5. Gangaraju, V.K. and Bartholomew, B. (2007) Mutat Res 618, 3-17.
    6. Lessard, J.A. and Crabtree, G.R. (2010) Annu Rev Cell Dev Biol 26, 503-32.
    7. Morettini, S. et al. (2008) Front Biosci 13, 5522-32.
    8. Wolf, I.M. et al. (2008) J Cell Biochem 104, 1580-6.
    9. Simone, C. (2006) J Cell Physiol 207, 309-14.
    10. Nie, Z. et al. (2000) Mol Cell Biol 20, 8879-88.
    11. Xue, Y. et al. (2000) Proc Natl Acad Sci U S A 97, 13015-20.
    12. Lemon, B. et al. (2001) Nature 414, 924-8.
    13. Wang, Z. et al. (2004) Genes Dev 18, 3106-16.
    14. Varela, I. et al. (2011) Nature 469, 539-42.
    15. Xia, W. et al. (2008) Cancer Res 68, 1667-74.
    16. Mo, D. et al. (2015) Int J Clin Exp Pathol 8, 9307-13.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    CST is a registered trademark of Cell Signaling Technology, Inc.
    SignalStain is a registered trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.