Buy 3 Get a 4th Free* | Learn More >>
9360
PDGF Receptor α Antibody Sampler Kit

PDGF Receptor α Antibody Sampler Kit #9360

Western Blotting Image 1

Phospho-PDGF Receptor α (Tyr754) (23B2) Rabbit mAb specifically binds to tyrosine phosphorylated PDGF receptor α, but not other phosphorylated tyrosine kinases. Western blot analysis of of extracts from cells expressing different activated tyrosine kinase proteins, using Phospho-PDGF Receptor α (Tyr754) (23B2) Rabbit mAb (upper) or Phospho-Tyrosine Mouse mAb (P-Tyr-100) #9411 (lower).

Learn more about how we get our images
Western Blotting Image 2

Western blot analysis of NIH/3T3 cells, untreated or treated with PDGFbb using Phospho-PDGF Receptor α (Tyr849)/PDGF Receptor β (Tyr857) (C43E9) Rabbit mAb (upper) and PDGF Receptor β (28E1) Rabbit mAb #3169 (lower).

Learn more about how we get our images
Western Blotting Image 3

Western blot analysis of cell extracts from NIH/3T3 cells, untreated or treated with PDGF-AA, using Phospho-PDGF Receptor α (Tyr1018) Antibody (upper) or PDGF Receptor α Antibody #3164 (lower).

Learn more about how we get our images
Western Blotting Image 4

Western blot analysis of extracts from NIH/3T3 and human skeletal muscle cells (SKMC), untreated or treated with PDGF-BB, using PDGF Receptor α (D1E1E) XP® Rabbit mAb.

Learn more about how we get our images
Western Blotting Image 5

After the primary antibody is bound to the target protein, a complex with HRP-linked secondary antibody is formed. The LumiGLO® is added and emits light during enzyme catalyzed decomposition.

Learn more about how we get our images
IHC-P (paraffin) Image 6

Immunohistochemical analysis of paraffin-embedded human glioblastoma using PDGR Receptor α (D1E1E) XP® Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 7

Immunohistochemical analysis of paraffin-embedded human colon using PDGR Receptor α (D1E1E) XP® Rabbit mAb.

Learn more about how we get our images
IHC-P (paraffin) Image 8

Immunohistochemical analysis of paraffin-embedded U-118 MG xenograft using PDGF Receptor α (D1E1E) XP® Rabbit mAb in the presence of control peptide (left) or antigen specific peptide (right).

Learn more about how we get our images
IHC-P (paraffin) Image 9

Immunohistochemical analysis of paraffin-embedded HCC827 xenograft using PDGF Receptor α (D1E1E) XP® Rabbit mAb.

Learn more about how we get our images
Flow Cytometry Image 10

Flow cytometric analysis of U-87 MG cells (blue) and H1703 cells (green) using PDGF Receptor α (D1E1E) XP® Rabbit mAb.

Learn more about how we get our images
IF-IC Image 11

Confocal immunofluorescent analysis of A-204 (left) and U-87 MG cells (right) using PDGF Receptor α (D1E1E) XP® Rabbit mAb (green). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).

Learn more about how we get our images
Product Includes Quantity Applications Reactivity MW(kDa) Isotype
Phospho-PDGF Receptor α (Tyr754) (23B2) Rabbit mAb 2992 20 µl
  • WB
  • IP
H M 190 Rabbit 
Phospho-PDGF Receptor α (Tyr849)/PDGF Receptor β (Tyr857) (C43E9) Rabbit mAb 3170 20 µl
  • WB
  • IP
H M R 190 Rabbit 
Phospho-PDGF Receptor α (Tyr1018) Antibody 4547 20 µl
  • WB
H M 190 Rabbit 
PDGF Receptor α (D1E1E) XP® Rabbit mAb 3174 20 µl
  • WB
  • IP
  • IHC
  • IF
  • F
H M 190 Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl
  • WB
Goat 

The PDGF Receptor α Antibody Sampler Kit provides an economical means of evaluating total PDGF receptor α protein (PDGFRα) levels as well as PDGFRα phosphorylated at specific sites. The kit contains enough primary and secondary antibody to perform two western blots with each antibody.

Each antibody in the PDGF Receptor α Antibody Sampler Kit detects endogenous levels of its target protein, with activation state antibodies recognizing target proteins only when phosphorylated at the indicated residues. Phospho-PDGF Receptor α (Tyr849)/PDGF Receptor β (Tyr857) (C43E9) Rabbit mAb and Phospho-PDGF Receptor α (Tyr1018) Antibody may cross-react with other activated tyrosine kinases; PDGF Receptor α (D1E1E) XP® Rabbit mAb may cross-react with PDGFRβ at overexpressed levels.

Activation state monoclonal antibodies are produced by immunizing animals with synthetic phosphopeptides corresponding to residues surrounding Tyr754 of human PDGFRα and Tyr857 of human PDGFRβ. Total PDGFRα monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy-terminal sequence of human PDGFRα. Activation state polyclonal antibodies are produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Tyr1018 of human PDGFRα. Polyclonal antibodies are purified by protein A and peptide affinity chromatography.

Platelet derived growth factor (PDGF) family proteins exist as several disulphide-bonded, dimeric isoforms (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind in a specific pattern to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ). PDGFRα and PDGFRβ share 75% to 85% sequence homology between their two intracellular kinase domains, while the kinase insert and carboxy-terminal tail regions display a lower level (27% to 28%) of homology (1). PDGFRα homodimers bind all PDGF isoforms except those containing PDGF D. PDGFRβ homodimers bind PDGF BB and DD isoforms, as well as the PDGF AB heterodimer. The heteromeric PDGF receptor α/β binds PDGF B, C, and D homodimers, as well as the PDGF AB heterodimer (2). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (3). Various cells differ in the total number of receptors present and in the receptor subunit composition, which may account for responsive differences among cell types to PDGF binding (4). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. A number of different signaling pathways are initiated by activated PDGF receptors and lead to control of cell growth, actin reorganization, migration, and differentiation (5). Tyr751 in the kinase-insert region of PDGFRβ is the docking site for PI3 kinase (6). Phosphorylated pentapeptides derived from Tyr751 of PDGFRβ (pTyr751-Val-Pro-Met-Leu) inhibit the association of the carboxy-terminal SH2 domain of the p85 subunit of PI3 kinase with PDGFRβ (7). Tyr740 is also required for PDGFRβ-mediated PI3 kinase activation (8).

  1. Deuel, T.F. et al. (1988) Biofactors 1, 213-7.
  2. Bergsten, E. et al. (2001) Nat. Cell Biol. 3, 512-516.
  3. Betsholtz, C. et al. (2001) Bioessays 23, 494-507.
  4. Coughlin, S.R. et al. (1988) Prog. Clin. Biol. Res. 266, 39-45.
  5. Ostman, A. and Heldin, C.H. (2001) Adv Cancer Res 80, 1-38.
  6. Panayotou, G. et al. (1992) EMBO J. 11, 4261-4272.
  7. Ramalingam, K. et al. (1995) Bioorg Med Chem 3, 1263-72.
  8. Kashishian, A. et al. (1992) EMBO J. 11, 1373-1382.
Entrez-Gene Id
5156 , 5159
Swiss-Prot Acc.
P16234 , P09619
For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.

Upstream / Downstream

pathwayImage

Explore pathways related to this product.