Render Target: STATIC
Render Timestamp: 2025-03-19T10:59:52.624Z
Commit: 779953b12a5930618aae6aca7c87fb286faeb1d7
XML generation date: 2025-03-07 13:20:30.051
Product last modified at: 2025-02-13T09:00:16.116Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Matched Antibody Pair
PDP - Template ID: *******446e1e7

Phospho-Pyruvate Dehydrogenase α1 (Ser293) Matched Antibody Pair #53396

Filter:
  • ELISA

    Supporting Data

    REACTIVITY H M R Mk
    Application Key:
    • ELISA-ELISA 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Matched Antibody Pairs consist of capture and detection antibodies that bind to non-overlapping epitopes. For specific identification of the capture and detection antibodies in this pair, please refer to the data figure caption. Optimal dilutions/concentrations should be determined by the end user.

    Formulation

    Supplied in 1X PBS (10 mM Na2HPO4, 3 mM KCl, 2 mM KH2PO4, and 140 mM NaCl (pH 7.8)). BSA and Azide Free.

    Storage

    Store at -20ºC. This product will freeze at -20ºC so it is recommended to aliquot into single-use vials to avoid multiple freeze/thaw cycles. A slight precipitate may be present and can be dissolved by gently vortexing. This will not interfere with antibody performance.

    Product Description

    The Phospho-Pyruvate Dehydrogenase α1 (Ser293) Matched Antibody Pair is ideal for use with immunoassay technologies and high-throughput ELISA platforms requiring antibody pairs with specialized or custom antibody labeling. Labels include fluorophores, lanthanides, biotin, and beads. Platforms requiring conjugated Matched Antibody Pairs include MSD, Quanterix Simoa, Alpha Technology (AlphaScreen, AlphaLISA, LANCE, HTRF), and Luminex.

    Learn how Matched Antibody Pairs move your projects forward, faster at cst-science.com/matched-antibody-pairs.

    Background

    The pyruvate dehydrogenase complex catalyzes the conversion of pyruvate and CoA into acetyl-CoA and CO2 in the presence of NAD+. Acetyl-CoA then goes into the citric acid cycle where it reacts with oxaloacetate to form citrate. The reaction of oxidative decarboxylation of pyruvate serves as a critical link between glycolysis and the citric acid cycle. In mammalian cells, the pyruvate dehydrogenase complex is located in the mitochondrial matrix (1). This complex is composed of three enzymes: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). Pyruvate dehydrogenase (E1) consists of two subunits: α and β. This enzyme catalyzes the removal of CO2 from pyruvate. Mutations in the α subunits of pyruvate dehydrogenase (E1) lead to congenital defects that are usually associated with lactic acidosis, neurodegeneration, and early death (2).
    Pyruvate dehydrogenase kinase 1 phosphorylates pyruvate dehydrogenase (E1) α1 subunit at Ser293 to inactivate its activity (3,4). This phosphorylation contributes to the tumor metabolic reprogramming toward glycolysis in hypoxia by inhibiting the citric acid cycle (4).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.