Render Target: STATIC
Render Timestamp: 2024-12-13T11:31:48.119Z
Commit: 611277b6de3cd1bb065350b6ef8d63df412b7185
XML generation date: 2024-10-08 22:05:26.103
Product last modified at: 2024-10-13T08:00:11.373Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77

SARS-CoV-2 Spike Protein (E2M5O) Mouse mAb (BSA and Azide Free) #10947

    Supporting Data

    REACTIVITY Vir
    SENSITIVITY Endogenous
    MW (kDa)
    Source/Isotype Mouse IgG1 kappa
    Species Cross-Reactivity Key:
    • Vir-Virus 

    Product Information

    Product Usage Information

    This formulation is ideal for use with technologies requiring specialized or custom antibody labeling, including fluorophores, metals, lanthanides, and oligonucleotides. It is not recommended for ChIP, ChIP-seq, CUT&RUN or CUT&Tag assays. If you require a carrier free formulation for chromatin profiling, please contact us. Optimal dilutions/concentrations should be determined by the end user.

    BSA and Azide Free antibodies are quality control tested by size exclusion chromatography (SEC) to determine antibody integrity.

    Formulation

    Supplied in 1X PBS (10 mM Na2HPO4, 3 mM KCl, 2 mM KH2PO4, and 140 mM NaCl (pH 7.8)). BSA and Azide Free.

    Storage

    Store at -20°C. This product will freeze at -20°C so it is recommended to aliquot into single-use vials to avoid multiple freeze/thaw cycles. A slight precipitate may be present and can be dissolved by gently vortexing. This will not interfere with antibody performance.

    Specificity / Sensitivity

    SARS-CoV-2 Spike Protein (E2M5O) Mouse mAb (BSA and Azide Free) recognizes endogenous levels of total SARS-CoV-2 spike protein.

    Species Reactivity:

    Virus

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Pro25 of SARS-CoV-2 spike protein.

    Background

    The cause of the COVID-19 pandemic is a novel and highly pathogenic coronavirus, termed SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2). SARS-CoV-2 is a member of the Coronaviridae family of viruses (1). The SARS-CoV-2 virion is comprised of four key structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N) (2). Coronavirus spike proteins are class I fusion proteins and harbor an ectodomain, a transmembrane domain, and an intracellular tail (3,4). The highly glycosylated ectodomain projects from the viral envelope surface and facilitates attachment and fusion with the host cell membrane. The ectodomain can be further subdivided into the receptor-binding domain (RBD) S1 and membrane-fusion (S2) subunits, which are produced upon proteolysis by host proteases. S1 and S2 subunits are reassociated after cleavage, assembling into crown-like homotrimers (2,4).

    The SARS-CoV-2 spike protein contains a novel tetrabasic "furin cleavage site" (FCS) at the S1/S2 junction. Research studies suggest this site is cleaved by proprotein convertases (e.g., furin) or lysosomal proteases (e.g., cathepsin L) (5,6). S1/S2 cleavage elicits a confirmational change in the spike protein that positions elements of the trimeric RBD in an exposed "up" position, priming it for interaction with host receptor proteins. Cleavage can occur at multiple steps of the viral lifecycle, including during viral packaging, or upon contact of the intact virion with the host cell surface. This novel cleavage event has been suggested to contribute to the high infectivity rate of the SARS-CoV-2 virus (7).

    The SARS-CoV-2 virus has been shown to utilize the angiotensin-converting enzyme 2 (ACE2) protein as its primary receptor for cellular entry (8). However, research studies have suggested that other cell surface proteins may serve as receptors or co-receptors for SARS-CoV-2. These include neuropilin-1 (NPN1), a single-pass transmembrane receptor that can function as part of a semaphorin receptor complex, and as a vascular endothelial growth factor (VEGF) receptor (9), and Basigin/EMMPRIN (CD147), a type I integral membrane receptor belonging to the immunoglobulin superfamily (10).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.