Buy 3 and get the 4th for FREE* | Learn More >>
9515
Smad4 Antibody
Primary Antibodies

Smad4 Antibody #9515

Reviews ()
Citations (115)

We recommend the following alternatives

# Product Name Application Reactivity
  • WB
  • IP
  • ChIP
H M R Mk

Supporting Data

REACTIVITY
SENSITIVITY
MW (kDa) 70
SOURCE Rabbit

Application Key:

  • W-Western
  • IP-Immunoprecipitation
  • IHC-Immunohistochemistry
  • ChIP-Chromatin Immunoprecipitation
  • IF-Immunofluorescence
  • F-Flow Cytometry
  • E-P-ELISA-Peptide

Species Cross-Reactivity Key:

  • H-Human
  • M-Mouse
  • R-Rat
  • Hm-Hamster
  • Mk-Monkey
  • Mi-Mink
  • C-Chicken
  • Dm-D. melanogaster
  • X-Xenopus
  • Z-Zebrafish
  • B-Bovine
  • Dg-Dog
  • Pg-Pig
  • Sc-S. cerevisiae
  • Ce-C. elegans
  • Hr-Horse
  • All-All Species Expected

Storage:

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

Specificity / Sensitivity

Smad4 Antibody detects endogenous levels of total Smad4 protein.

Source / Purification

Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to the residues surrounding Pro278 of human Smad4. Antibodies are purified by protein A and peptide affinity chromatography.

Background

Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmits TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the recepter-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Briefly, activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved SSXS motif at the carboxy-terminus of the proteins. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad, Smad4, and together the complex moves to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

  1. Heldin, C.H. et al. (1997) Nature 390, 465-71.
  2. Attisano, L. and Wrana, J.L. (1998) Curr Opin Cell Biol 10, 188-94.
  3. Derynck, R. et al. (1998) Cell 95, 737-40.
  4. Massagué, J. (1998) Annu Rev Biochem 67, 753-91.
  5. Whitman, M. (1998) Genes Dev 12, 2445-62.
  6. Wrana, J. (2000) Science 23, 1-9.
  7. Attisano, L. and Wrana, J.L. (2002) Science 296, 1646-7.
  8. Moustakas, A. et al. (2001) J Cell Sci 114, 4359-69.

Pathways & Proteins

Explore pathways + proteins related to this product.

For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.

To Purchase # 9515