Cell Signaling Technology Logo
1% for the planet logo

SPT5 Antibody #9033

Filter:
  • WB

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 150
    SOURCE Rabbit
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    SPT5 Antibody recognizes endogenous levels of total SPT5 protein.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    The antigen sequence used to produce this antibody shares 100% sequence homology with the species listed here, but reactivity has not been tested or confirmed to work by CST. Use of this product with these species is not covered under our Product Performance Guarantee.

    Species predicted to react based on 100% sequence homology:

    Hamster, Bovine, Dog, Horse, Guinea Pig

    Source / Purification

    Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Gly803 of human SPT5 protein. Antibodies are purified by protein A and peptide affinity chromatography.

    Background

    DRB-sensitivity inducing factor (DSIF), a heterodimer composed of SPT4 and SPT5, is capable of both facilitating and inhibiting RNA polymerase II (RNAPII) activity (1-3). DSIF, together with NELF (Negative Elongation Factor), inhibits RNAPII elongation, resulting in promoter proximal pausing of RNAPII as it awaits additional signaling to resume transcription (4). The release of promoter proximal pausing is signaled through phosphorylation of the RNAPII C-terminal domain (CTD) and NELF by positive transcription elongation factor (P-TEFb) (5). P-TEFb also phosphorylates SPT5 at Thr4 within the evolutionarily conserved heptapeptide repeat motif. This phosphorylation event switches DSIF from a transcriptional repressor to an activator where it becomes a critical factor for transcriptional elongation (6,7).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.