Render Target: STATIC
Render Timestamp:
3/25/2025, 7:36:39 AM EDT
3/25/2025, 11:36:39 AM UTC
Commit: 8d93f7ebe45006d66c127727d817fc3f57c4fe9a
XML generation date: 2025-03-07 13:20:27.117
Product last modified at: 2025-02-07T08:01:39.089Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Matched Antibody Pair
PDP - Template ID: *******446e1e7

Total FGF Receptor 2 Matched Antibody Pair #99057

Filter:
  • ELISA

    Supporting Data

    REACTIVITY H M
    Application Key:
    • ELISA-ELISA 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 

    Product Information

    Product Usage Information

    Matched Antibody Pairs consist of capture and detection antibodies that bind to non-overlapping epitopes. For specific identification of the capture and detection antibodies in this pair, please refer to the data figure caption. Optimal dilutions/concentrations should be determined by the end user.

    Formulation

    Supplied in 1X PBS (10 mM Na2HPO4, 3 mM KCl, 2 mM KH2PO4, and 140 mM NaCl (pH 7.8)). BSA and Azide Free.

    Storage

    Store at -20ºC. This product will freeze at -20ºC so it is recommended to aliquot into single-use vials to avoid multiple freeze/thaw cycles. A slight precipitate may be present and can be dissolved by gently vortexing. This will not interfere with antibody performance.

    Product Description

    The Total FGF Receptor 2 Matched Antibody Pair is ideal for use with immunoassay technologies and high-throughput ELISA platforms requiring antibody pairs with specialized or custom antibody labeling. Labels include fluorophores, lanthanides, biotin, and beads. Platforms requiring conjugated Matched Antibody Pairs include MSD, Quanterix Simoa, Alpha Technology (AlphaScreen, AlphaLISA, LANCE, HTRF), and Luminex.

    Learn how Matched Antibody Pairs move your projects forward, faster at cst-science.com/matched-antibody-pairs.

    Background

    Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through cell surface receptor tyrosine kinases. There are four members of the FGF receptor family: FGFR1 (flg), FGFR2 (bek, KGFR), FGFR3, and FGFR4. Each receptor contains an extracellular ligand-binding domain, a transmembrane domain, and a cytoplasmic kinase domain (1). Following ligand binding and dimerization, the receptors are phosphorylated at specific tyrosine residues (2). Seven tyrosine residues in the cytoplasmic tail of FGFR1 can be phosphorylated: Tyr463, 583, 585, 653, 654, 730, and 766. Tyr653 and Tyr654 are important for catalytic activity of activated FGFR and are essential for signaling (3). The other phosphorylated tyrosine residues may provide docking sites for downstream signaling components, such as Crk and PLCγ (4,5).
    FGFR2 has several splicing isoforms, with ligand specificity largely determined by alternative splicing of exons 8 (IIIb) and 9 (IIIc). Alternative splicing is cell type specific, resulting in isoforms showing various tissue distribution and biological activities (6,7). Research studies have shown that mutations in the corresponding FGFR2 gene cause syndromes characterized by facial and limb defects, including LADD Syndrome, Crouzon Syndrome, Beare-Stevenson Cutis Gyrata Syndrome, Pfeiffer Syndrome, Apert Syndrome, and Jackson-Weiss Syndrome (8-10). Investigators have also observed mutations and altered expression of FGFR2 in cases of gastric, endometrial, and breast cancer (11).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.