Render Target: STATIC
Render Timestamp:
3/26/2025, 10:00:43 AM EDT
3/26/2025, 2:00:43 PM UTC
Commit: 461ca8d8fe5b1efd4c01fc87e5b5eb592e2d154a
XML generation date: 2025-03-07 19:01:10.469
Product last modified at: 2025-02-13T09:00:16.109Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Matched Antibody Pair
PDP - Template ID: *******446e1e7

Total LRRK2 Matched Antibody Pair #65040

Filter:
  • ELISA

    Supporting Data

    REACTIVITY H M
    Application Key:
    • ELISA-ELISA 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 

    Product Information

    Product Usage Information

    Matched Antibody Pairs consist of capture and detection antibodies that bind to non-overlapping epitopes. For specific identification of the capture and detection antibodies in this pair, please refer to the data figure caption. Optimal dilutions/concentrations should be determined by the end user.

    Formulation

    Supplied in 1X PBS (10 mM Na2HPO4, 3 mM KCl, 2 mM KH2PO4, and 140 mM NaCl (pH 7.8)). BSA and Azide Free.

    Storage

    Store at -20ºC. This product will freeze at -20ºC so it is recommended to aliquot into single-use vials to avoid multiple freeze/thaw cycles. A slight precipitate may be present and can be dissolved by gently vortexing. This will not interfere with antibody performance.

    Product Description

    The Total LRRK2 Matched Antibody Pair is ideal for use with immunoassay technologies and high-throughput ELISA platforms requiring antibody pairs with specialized or custom antibody labeling. Labels include fluorophores, lanthanides, biotin, and beads. Platforms requiring conjugated Matched Antibody Pairs include MSD, Quanterix Simoa, Alpha Technology (AlphaScreen, AlphaLISA, LANCE, HTRF), and Luminex.

    Learn how Matched Antibody Pairs move your projects forward, faster at cst-science.com/matched-antibody-pairs.

    Background

    Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s, is a progressive movement disorder characterized by rigidity, tremors, and postural instability. The pathological hallmarks of PD are progressive loss of dopaminergic neurons in the substantia nigra of the ventral midbrain and the presence of intracellular Lewy bodies (protein aggregates of α-synuclein, ubiquitin, and other components) in surviving neurons of the brain stem (1). Research studies have shown various genes and loci are genetically linked to PD including α-synuclein/PARK1 and 4, parkin/PARK2, UCH-L1/PARK5, PINK1/PARK6, DJ-1/PARK7, LRRK2/PARK8, synphilin-1, and NR4A2 (2).
    Leucine-rich repeat kinase 2 (LRRK2) contains amino-terminal leucine-rich repeats (LRR), a Ras-like small GTP binding protein-like (ROC) domain, an MLK protein kinase domain, and a carboxy-terminal WD40 repeat domain. Research studies have linked at least 20 LRRK2 mutations to PD, with the G2019S mutation being the most prevalent (3). The G2019S mutation causes increased LRRK2 kinase activity, which induces a progressive reduction in neurite length that leads to progressive neurite loss and decreased neuronal survival (4). Researchers are currently testing the MLK inhibitor CEP-1347 in PD clinical trials, indicating the potential value of LRRK2 as a therapeutic target for treatment of PD (5).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.