Buy 3 and get the 4th FREE!* | Learn More >>
4607
TrkB (80G2) Rabbit mAb
Primary Antibodies

TrkB (80G2) Rabbit mAb #4607

Reviews ()
Citations (4)
Filter:
  1. IHC

Immunohistochemical analysis of paraffin-embedded human lung carcinoma using TrkB (80G2) Rabbit mAb.

Immunohistochemical analysis of paraffin-embedded NIH/3T3/TrkB (left) or NIH/3T3/TrkA (right) cell pellets using TrkB (80G2) Rabbit mAb.

To Purchase # 4607S
Product # Size Price
4607S
100 µl $ 260

Supporting Data

REACTIVITY H
SENSITIVITY Endogenous
MW (kDa) 140
Isotype Rabbit IgG

Product Usage Information

Application Dilutions
Immunohistochemistry (Paraffin) 1:2560

Storage:

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Protocol

PRINT

View >Collapse >

Immunohistochemistry (Paraffin)

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. Xylene.
  2. Ethanol, anhydrous denatured, histological grade (100% and 95%).
  3. Deionized water (dH2O).
  4. Hematoxylin (optional).
  5. Wash Buffer:
    1. 1X Tris Buffered Saline with Tween® 20 (TBST): To prepare 1L 1X TBST add 100 ml 10X Tris Buffered Saline with Tween® 20 (#9997) to 900 ml dH20, mix.
  6. SignalStain® Antibody Diluent (#8112).
  7. 1X Citrate Unmasking Solution: To prepare 250 mL of 1X citrate unmasking solution, dilute 25 ml of SignalStain® Citrate Unmasking Solution (10X) (#14746) with 225 mL of dH2O.
  8. 3% Hydrogen Peroxide: To prepare 100 ml, add 10 ml 30% H2O2 to 90 ml dH2O.
  9. Blocking Solution: TBST/5% Normal Goat Serum or 1X Animal-Free Blocking Solution.
    1. TBST/5% Normal Goat Serum: to 5 ml 1X TBST, add 250 µl Normal Goat Serum (#5425).
    2. 1X Animal-Free Blocking Solution: to 4 mL of dH2O add 1 ml of Animal-Free Blocking Solution (5X) (#15019).
  10. Detection System: SignalStain® Boost IHC Detection Reagents (HRP, Rabbit #8114).
  11. Substrate: SignalStain® DAB Substrate Kit (#8059).
  12. Hematoxylin: Hematoxylin (#14166).
  13. Mounting Medium: SignalStain® Mounting Medium (#14177).

B. Deparaffinization/Rehydration

NOTE: Do not allow slides to dry at any time during this procedure.

  1. Deparaffinize/hydrate sections:
    1. Incubate sections in three washes of xylene for 5 min each.
    2. Incubate sections in two washes of 100% ethanol for 10 min each.
    3. Incubate sections in two washes of 95% ethanol for 10 min each.
  2. Wash sections two times in dH2O for 5 min each.

C. Antigen Unmasking

For Citrate: Heat slides in a microwave submersed in 1X citrate unmasking solution until boiling is initiated; follow with 10 min at a sub-boiling temperature (95°-98°C). Cool slides on bench top for 30 min.

D. Staining

  1. Wash sections in dH2O three times for 5 min each.
  2. Incubate sections in 3% hydrogen peroxide for 10 min.
  3. Wash sections in dH2O two times for 5 min each.
  4. Wash sections in wash buffer for 5 min.
  5. Block each section with 100–400 µl of preferred blocking solution for 1 hr at room temperature.
  6. Remove blocking solution and add 100–400 µl primary antibody diluted in SignalStain® Antibody Diluent (#8112) to each section. Incubate overnight at 4°C.
  7. Equilibrate SignalStain® Boost Detection Reagent (HRP, Rabbit #8114) to room temperature.
  8. Remove antibody solution and wash sections with wash buffer three times for 5 min each.
  9. Cover section with 1–3 drops SignalStain® Boost Detection Reagent (HRP, Rabbit #8114) as needed. Incubate in a humidified chamber for 30 min at room temperature.
  10. Wash sections three times with wash buffer for 5 min each.
  11. Add 1 drop (30 µl) SignalStain® DAB Chromogen Concentrate to 1 ml SignalStain® DAB Diluent and mix well before use.
  12. Apply 100–400 µl SignalStain® DAB to each section and monitor closely. 1–10 min generally provides an acceptable staining intensity.
  13. Immerse slides in dH2O.
  14. If desired, counterstain sections with hematoxylin (#14166).
  15. Wash sections in dH2O two times for 5 min each.
  16. Dehydrate sections:
    1. Incubate sections in 95% ethanol two times for 10 sec each.
    2. Repeat in 100% ethanol, incubating sections two times for 10 sec each.
    3. Repeat in xylene, incubating sections two times for 10 sec each.
  17. Mount sections with coverslips and mounting medium (#14177).

posted February 2010

revised March 2016

Protocol Id: 283

Specificity / Sensitivity

TrkB (80G2) Rabbit mAb detects endogenous levels of total TrkB protein. The antibody does not cross-react with TrkA.

Species Reactivity:

Human

Species predicted to react based on 100% sequence homology:

Mouse, Rat

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide surrounding Pro50 of human TrkB.

Background

The family of Trk receptor tyrosine kinases consists of TrkA, TrkB, and TrkC. While the sequence of these family members is highly conserved, they are activated by different neurotrophins: TrkA by NGF, TrkB by BDNF or NT4, and TrkC by NT3 (1). Neurotrophin signaling through these receptors regulates a number of physiological processes, such as cell survival, proliferation, neural development, and axon and dendrite growth and patterning (1). In the adult nervous system, the Trk receptors regulate synaptic strength and plasticity. TrkA regulates proliferation and is important for development and maturation of the nervous system (2). Phosphorylation at Tyr490 is required for Shc association and activation of the Ras-MAP kinase cascade (3,4). Residues Tyr674/675 lie within the catalytic domain, and phosphorylation at these sites reflects TrkA kinase activity (3-6). Point mutations, deletions, and chromosomal rearrangements (chimeras) cause ligand-independent receptor dimerization and activation of TrkA (7-10). TrkA is activated in many malignancies including breast, ovarian, prostate, and thyroid carcinomas (8-13). Research studies suggest that expression of TrkA in neuroblastomas may be a good prognostic marker as TrkA signals growth arrest and differentiation of cells originating from the neural crest (10).

The phosphorylation sites are conserved between TrkA and TrkB: Tyr490 of TrkA corresponds to Tyr512 in TrkB, and Tyr674/675 of TrkA to Tyr706/707 in TrkB of the human sequence (14). TrkB is overexpressed in tumors, such as neuroblastoma, prostate adenocarcinoma, and pancreatic ductal adenocarcinoma (15). Research studies have shown that in neuroblastomas, overexpression of TrkB correlates with an unfavorable disease outcome when autocrine loops signaling tumor survival are potentiated by additional overexpression of brain-derived neurotrophic factor (BDNF) (16-18). An alternatively spliced truncated TrkB isoform lacking the kinase domain is overexpressed in Wilms’ tumors and this isoform may act as a dominant-negative regulator of TrkB signaling (17).

  1. Huang, E.J. and Reichardt, L.F. (2003) Annu Rev Biochem 72, 609-42.
  2. Segal, R.A. and Greenberg, M.E. (1996) Annu Rev Neurosci 19, 463-89.
  3. Stephens, R.M. et al. (1994) Neuron 12, 691-705.
  4. Marsh, H.N. et al. (2003) J Cell Biol 163, 999-1010.
  5. Obermeier, A. et al. (1993) EMBO J 12, 933-41.
  6. Obermeier, A. et al. (1994) EMBO J 13, 1585-90.
  7. Arevalo, J.C. et al. (2001) Oncogene 20, 1229-34.
  8. Reuther, G.W. et al. (2000) Mol Cell Biol 20, 8655-66.
  9. Greco, A. et al. (1997) Genes Chromosomes Cancer 19, 112-23.
  10. Pierotti, M.A. and Greco, A. (2006) Cancer Lett. 232, 90-98.
  11. Lagadec, C. et al. (2009) Oncogene 28, 1960-70.
  12. Greco, A. et al. (2010) Mol Cell Endocrinol 321, 44-9.
  13. Ødegaard, E. et al. (2007) Hum Pathol 38, 140-6.
  14. Huang, E.J. and Reichardt, L.F. (2003) Annu Rev Biochem 72, 609-42.
  15. Geiger, T.R. and Peeper, D.S. (2005) Cancer Res 65, 7033-6.
  16. Han, L. et al. (2007) Med Hypotheses 68, 407-9.
  17. Aoyama, M. et al. (2001) Cancer Lett 164, 51-60.
  18. Desmet, C.J. and Peeper, D.S. (2006) Cell Mol Life Sci 63, 755-9.

Pathways & Proteins

Explore pathways + proteins related to this product.

For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.