Interested in promotions? | Click here >>
15159
Propionyl-Lysine [Prop-K] (D3A9R) Rabbit mAb
Proteomic Analysis Products
Monoclonal Antibody

Propionyl-Lysine [Prop-K] (D3A9R) Rabbit mAb #15159

Citations (0)
No Current Image - Propionyl-Lysine [Prop-K] (D3A9R) Rabbit mAb

Supporting Data

REACTIVITY
SENSITIVITY
MW (kDa)
Source/Isotype Rabbit 

Application Key:

  • W-Western
  • IP-Immunoprecipitation
  • IHC-Immunohistochemistry
  • ChIP-Chromatin Immunoprecipitation
  • IF-Immunofluorescence
  • F-Flow Cytometry
  • E-P-ELISA-Peptide

Species Cross-Reactivity Key:

  • H-Human
  • M-Mouse
  • R-Rat
  • Hm-Hamster
  • Mk-Monkey
  • Mi-Mink
  • C-Chicken
  • Dm-D. melanogaster
  • X-Xenopus
  • Z-Zebrafish
  • B-Bovine
  • Dg-Dog
  • Pg-Pig
  • Sc-S. cerevisiae
  • Ce-C. elegans
  • Hr-Horse
  • All-All Species Expected

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

Specificity / Sensitivity

Propionyl-Lysine (D3A9R) Rabbit mAb recognizes endogenous levels of proteins only when propionylated at a lysine residue. This antibody does not cross-react with other lysine modifications.

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide library containing propionyl-lysine.

Background

Lysine is subject to a wide array of regulatory post-translational modifications due to its positively charged ε-amino group side chain. The most prevalent of these are ubiquitination and acetylation, which are highly conserved among prokaryotes and eukaryotes (1,2). Acyl group transfer from the metabolic intermediates acetyl-, succinyl-, malonyl-, glutaryl-, butyryl-, propionyl-, and crotonyl-CoA all neutralize lysine’s positive charge and confer structural alterations affecting substrate protein function. Lysine acetylation is catalyzed by histone acetyltransferases, HATs, using acetyl-CoA as a cofactor (3,4). Deacylation is mediated by histone deacetylases, HDACs 1-11, and NAD-dependent Sirtuins 1-7. Some sirtuins have little to no deacetylase activity, suggesting that they are better suited for other acyl lysine substrates (5).

Protein propionyl and butyryl transferase activity has been reported for p300 and CREB-binding protein, two acetyltransferases that can autoacylate as well as target histone proteins and p53 in vitro. Sirt1 (Sir2 in yeast) has been shown to have depropionylase activity and may be a major eukaryotic depropionylase (6,7). In the cytosol, acetyl-CoA carboxylase (ACC) converts acetyl-CoA to Malonyl-CoA and the reverse reaction is catalyzed by Malonyl-CoA decarboxylase (MCD), but in the mitochondria, propionyl-CoA carboxylase takes the role of ACC. Both MCD and ACC are regulated by AMPK, glucose levels, and insulin, underscoring their importance in intermediary metabolism (8).

  1. Liu, Z. et al. (2014) Nucleic Acids Res 42, D531-6.
  2. Lee, S. (2013) Toxicol Res 29, 81-6.
  3. Lin, H. et al. (2012) ACS Chem Biol 7, 947-60.
  4. Zhang, Z. et al. (2011) Nat Chem Biol 7, 58-63.
  5. Du, J. et al. (2011) Science 334, 806-9.
  6. Chen, Y. et al. (2007) Mol Cell Proteomics 6, 812-9.
  7. Cheng, Z. et al. (2009) Mol Cell Proteomics 8, 45-52.
  8. Newman, J.C. et al. (2012) J Biol Chem 287, 42436-43.
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
XP is a registered trademark of Cell Signaling Technology, Inc.
Tween is a registered trademark of ICI Americas, Inc.
Use of Cell Signaling Technology (CST) Motif Antibodies within certain methods (e.g., U.S. Patents No. 7,198,896 and 7,300,753) may require a license from CST. For information regarding academic licensing terms please have your technology transfer office contact CST Legal Department at [email protected] For information regarding commercial licensing terms please contact CST Pharma Services Department at [email protected]
To Purchase # 15159