Microsize antibodies for $99 | Learn More >>

Antibody Sampler Kit Regulation of Signal Transduction

The HER/ErbB Family Antibody Sampler Kit provides an economical means to evaluate the HER/ErbB Family, including the phosphorylation of EGFR, HER2/ErbB2, HER3/ErbB3, and HER4/ErbB4. The control antibodies to each family member are also included. The kit contains enough antibody to perform two western blot experiments with each primary antibody.
The YAP/TAZ Transcriptional Targets Antibody Sampler Kit provides an economical means of detecting proteins whose transcription is subject to regulation by the transcriptional co-activators YAP and/or TAZ. The kit provides enough antibody to perform two western blot experiments with each primary antibody.

Background: YAP and TAZ (WWTR1) are transcriptional co-activators that play a central role in the Hippo Signaling pathway that regulates cell, tissue and organ growth. Under growth conditions, YAP and TAZ are translocated to the nucleus, where they interact with DNA-binding transcription factors (e.g., Transcriptional Enhanced Activation Domain [TEAD] proteins) to regulate the expression of genes that control fundamental aspects of cell function, such as proliferation and cell survival (1). A number of genes have been experimentally confirmed as targets of transcriptional regulation by YAP and TAZ. These include the extracellular matrix proteins CTGF, CYR61, and integrin β2 (2-4), the inhibitor of apoptosis protein (IAP) survivin (5), the mechano-sensitive nuclear envelope protein Lamin B2 (6), and the oncogenic receptor tyrosine kinase Axl (7).

The Inflammasome Antibody Sampler Kit provides an economical means of detecting multiple inflammasome components. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The innate immune system works as the first line of defense in protection from pathogenic microbes and host-derived signals of cellular distress. One way in which these “danger” signals trigger inflammation is through activation of inflammasomes, which are multiprotein complexes that assemble in the cytosol after exposure to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) and result in the activation of caspase-1 and subsequent cleavage of proinflammatory cytokines IL-1β and IL-18 (Reviewed in 1-6). Inflammasome complexes typically consist of a cytosolic pattern recognition receptor (PRR; a nucleotide-binding domain and leucine-rich-repeat [NLR] or AIM2-like receptor [ALR] family member), an adaptor protein (ASC/TMS1), and pro-caspase-1. A number of distinct inflammasome complexes have been identified, each with a unique PRR and activation triggers. The best characterized is the NLRP3 complex, which contains NLRP3, ASC/TMS1, and pro-caspase-1. The NLRP3 inflammasome is activated in a two-step process. First, NF-κB signaling is induced through PAMP- or DAMP-mediated activation of TLR4 or TNFR, resulting in increased expression of NLRP3, pro-IL-1β, and pro-IL-18 (priming step, signal 1). Next, indirect activation of NLRP3 occurs by a multitude of signals (whole pathogens, PAMPs/DAMPs, potassium efflux, lysosomal-damaging environmental factors [uric acid, silica, alum] and endogenous factors [amyloid-β, cholesterol crystals], and mitochondrial damage), leading to complex assembly and activation of caspase-1 (signal 2). The complex inflammasome structure is built via domain interactions among the protein components. Other inflammasomes are activated by more direct means: double-stranded DNA activates the AIM2 complex, anthrax toxin activates NLRP1, and bacterial flagellin activates NLRC4. Activated caspase-1 induces secretion of proinflammatory cytokines IL-1β and -18, but also regulates metabolic enzyme expression, phagosome maturation, vasodilation, and pyroptosis, an inflammatory programmed cell death. Inflammasome signaling contributes to the onset of a number of diseases, including atherosclerosis, type II diabetes, Alzheimer’s disease, and autoimmune disorders.

The Microglia Interferon-Related Module Antibody Sampler Kit provides an economical means of detecting proteins identified as markers of interferon-related microglial activity by western blot and/or immunofluorescence.

Background: Distinct microglial activation states have been identified using RNA-seq data from a vast array of neurological disease and aging models. These activation states have been categorized into modules corresponding to proliferation, neurodegeneration, interferon-relation, LPS-relation, and many others (1). Previous work identifying markers of specific brain cell types using RNA-seq has shown HS1 and ASC/TMS1 to be useful and specific tools to study microglia (2). HS1 is a protein kinase substrate that is expressed only in tissues and cells of hematopoietic origin (3) and ASC/TMS1 has been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (4).

The Acetyl-Histone H4 Antibody Sampler Kit provides an economical means of detecting total histone H4 as well as histone H4 acetylated at various residues including Lys12, Lys5, and Lys8. The kit contains enough primary and secondary antibody to perform two western blots with each antibody.

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

The Death Receptor Antibody Sampler Kit provides an economical means to investigate the machinery of death receptor-mediated apoptosis. The kit includes enough of each primary antibody to perform two western mini-blot experiments per primary.
The Myosin Light Chain 2 Antibody Sampler Kit provides an economical means to detect total, phosphorylated, and dual-phosphorylated myosin light chain 2. The kit contains enough primary and secondary antibody to perform two western blot experiments.

Background: Myosin is composed of six polypeptide chains: two identical heavy chains and two pairs of light chains. Myosin light chain 2 (MLC2), also known as myosin regulatory light chain (MRLC), RLC, or LC20, has many isoforms depending on its distribution. In smooth muscle, MLC2 is phosphorylated at Thr18 and Ser19 by myosin light chain kinase (MLCK) in a Ca2+/calmodulin-dependent manner (1). This phosphorylation is correlated with myosin ATPase activity and smooth muscle contraction (2). ROCK also phosphorylates Ser19 of smooth muscle MLC2, which regulates the assembly of stress fibers (3). Phosphorylation of smooth muscle MLC2 at Ser1/Ser2 and Ser9 by PKC and cdc2 has been reported to inhibit myosin ATPase activity (4,5). Phosphorylation by cdc2 controls the timing of cytokinesis (5). Transgenic mice lacking phosphorylation sites on the cardiac muscle isoform show morphological and functional abnormalities (6).

The cdc25C Antibody Sampler Kit provides an economical means to investigate the entry of eukaryotic cells into mitosis. The kit contains enough primary and secondary antibodies to perform two Western blots with each antibody.

Background: Cdc25 is a protein phosphatase responsible for dephosphorylating and activating cdc2, a crucial step in regulating the entry of all eukaryotic cells into mitosis (1). cdc25C is constitutively phosphorylated at Ser216 throughout interphase by c-TAK1, while phosphorylation at this site is DNA damage-dependent at the G2/M checkpoint (2). When phosphorylated at Ser216, cdc25C binds to members of the 14-3-3 family of proteins, sequestering cdc25C in the cytoplasm and thereby preventing premature mitosis (3). The checkpoint kinases Chk1 and Chk2 phosphorylate cdc25C at Ser216 in response to DNA damage (4,5).

The Mitochondrial Dynamics Antibody Sampler Kit provides an economical means to examine signaling involved in mitochondrial dynamics. The kit contains enough primary antibody to perform two western blot experiments.

Background: Import of proteins into the mitochondria is regulated by the translocase of the outer mitochondrial membrane (TOM) complex, which facilitates transport through the outer mitochondrial membrane, and a complementary translocase of the inner membrane (TIM) complex, responsible for protein transport to the mitochondrial matrix. The TOM complex consists of the receptors Tom20, Tom22, and Tom70, and the channel-forming protein Tom40 (1). Tom20 is localized in the outer mitochondrial membrane and initially recognizes precursors with a presequence to facilitate protein import across the outer mitochondrial membrane (2).Changes in mitochondrial dynamics regulated by environmental cues affect mitochondrial size and shape and have been shown to dramatically impact mitochondrial metabolism, apoptosis, and autophagy (3). These processes are largely controlled by mitochondrial dynamin-related GTPases, including mitofusin-1, mitofusin-2, OPA1, and DRP1. DRP1 regulates mitochondrial fission, while the mitofusins and OPA1 control fusion at the outer and inner mitochondrial membrane, respectively. These proteins are tightly regulated. OPA1 activity is regulated through alternative splicing and post-translational modifications, including complex proteolytic processing by multiple proteases (4-9). In addition, OPA1 expression can be induced under conditions of metabolic demand through a pathway involving Parkin induced NF-κB activation (10). DRP1 is regulated in part through multiple phosphorylation sites (11). Phosphorylation of DRP1 at Ser616 by MAPK or during mitosis by CDKs stimulates mitochondrial fission (12-14). Mitochondrial fission factor (MFF) is a tail-anchored protein that resides within the outer mitochondrial membrane and is part of the mitochondrial fission complex. MFF participates in mitochondrial fission by serving as one of multiple receptors for the GTPase dynamin-related protein 1 (Drp1) (15-18). AMPK directly phosphorylates MFF at two sites to allow for enhanced recruitment of Drp1 to the mitochondria (19). 

MRN Complex Antibody Sampler Kit offers an economical way of detecting each target protein. The kit contains enough primary and secondary antibody to perform two western blot experiments with each primary antibody.
The Aurora Antibody Sampler Kit provides an economical means to investigate the G2/M phase of the cell cycle. The kit contains enough primary and secondary antibodies to perform two western blots with each antibody.

Background: Aurora kinases belong to a highly conserved family of mitotic serine/threonine kinases with three members identified among mammals: Aurora A, B, and C (1,2). Studies on the temporal expression pattern and subcellular localization of Aurora kinases in mitotic cells suggest an association with mitotic structure. Aurora kinase functional influences span from G2 phase to cytokinesis and may be involved in key cell cycle events such as centrosome duplication, chromosome bi-orientation and segregation, cleavage furrow positioning, and ingression (3). Aurora A is detected at the centrosomes, along mitotic spindle microtubules, and in the cytoplasm of mitotically proliferating cells. Aurora A protein levels are low during G1 and S phases and peak during the G2/M phase of the cell cycle. Phosphorylation of Aurora A at Thr288 in its catalytic domain increases kinase activity. Aurora A is involved in centrosome separation, maturation, and spindle assembly and stability. Expression of Aurora B protein also peaks during the G2/M phase of the cell cycle; Aurora B kinase activity peaks at the transition from metaphase to the end of mitosis. Aurora B associates with chromosomes during prophase prior to relocalizing to the spindle at anaphase. Aurora B regulates chromosome segregation through the control of microtubule-kinetochore attachment and cytokinesis. Expression of both Aurora A and Aurora B during the G2/M phase transition is tightly coordinated with histone H3 phosphorylation (4,5); research investigators have observed overexpression of these kinases in a variety of human cancers (2,4). Aurora C localizes to the centrosome from anaphase to cytokinesis and both mRNA and protein levels peak during G2/M phase. Although typical Aurora C expression is limited to the testis, research studies report overexpression of Aurora C is detected in various cancer cell lines (6).

The MYPT1 Antibody Sampler Kit is an economical way to examine the total protein levels of MYPT1 as well as MYPT1 phosphorylated at Ser507, Ser668, Thr853, and Thr696. The kit includes enough primary and secondary antibodies to perform two Western blot experiments.

Background: Protein phosphatase 1 (PP1) is a ubiquitous eukaryotic protein serine/threonine phosphatase involved in the regulation of various cell functions. Substrate specificity is determined by the binding of a regulatory subunit to the PP1 catalytic subunit (PP1c). It is estimated that over fifty different regulatory subunits exist (1).The myosin phosphatase holoenzyme is composed of three subunits: PP1c, a targeting/regulatory subunit (MYPT/myosin-binding subunit of myosin phosphatase), and a 20 kDa subunit of unknown function (M20). MYPT binding to PP1cδ alters the conformation of the catalytic cleft and increases enzyme activity and specificity (2). Two MYPT isoforms that are 61% identical have been described. MYPT1 is widely expressed, while MYPT2 expression appears to be exclusive to heart and brain (3). Related family members include MBS85, MYPT3, and TIMAP (4).Myosin phosphatase regulates the interaction of actin and myosin in response to signaling through the small GTPase Rho. Rho activity inhibits myosin phosphatase via Rho-associated kinase (ROCK). Phosphorylation of MYPT1 at Thr696 and Thr853 results in phosphatase inhibition and cytoskeletal reorganization (5,6).

The Methyl-Histone H3 (Lys36) Antibody Sampler Kit provides an economical means of detecting levels of mono-, di-, and tri-methyl histone H3 Lys36 using methyl-specific and control histone H3 antibodies. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

The Methyl-Histone H3 (Lys27) Antibody Sampler Kit provides an economical means of detecting levels of mono-, di-, and tri-methyl histone H3 Lys27 using methyl-specific and control histone H3 antibodies. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

The Neurofilament Antibody Sampler Kit provides an economical means of evaluating neurofilaments. The kit contains enough primary and secondary antibodies to perform two western blot experiments per primary antibody.

Background: The cytoskeleton consists of three types of cytosolic fibers: actin microfilaments, intermediate filaments, and microtubules. Neurofilaments are the major intermediate filaments found in neurons and consist of light (NFL), medium (NFM), and heavy (NFH) subunits (1). Similar in structure to other intermediate filament proteins, neurofilaments have a globular amino-terminal head, a central α-helical rod domain, and a carboxy-terminal tail. A heterotetrameric unit (NFL-NFM and NFL-NFH) forms a protofilament, with eight protofilaments comprising the typical 10 nm intermediate filament (2). While neurofilaments are critical for radial axon growth and determine axon caliber, microtubules are involved in axon elongation. PKA phosphorylates the head domain of NFL and NFM to inhibit neurofilament assembly (3,4). Research studies have shown neurofilament accumulations in many human neurological disorders including Parkinson's disease (in Lewy bodies along with α-synuclein), Alzheimer's disease, Charcot-Marie-Tooth disease, and Amyotrophic Lateral Sclerosis (ALS) (1).

The Acetyl-Histone H3 Antibody Sampler Kit provides a fast and economical means of evaluating the acetylation sites on Histone H3. The kit contains enough primary and secondary antibodies to perform two Western mini-blot experiments.

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

The Methyl-Histone H3 (Lys4) Antibody Sampler Kit provides an economical means of detecting levels of mono-, di-, and tri-methyl histone H3 Lys4 using methyl-specific and control histone H3 antibodies. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

The Methyl-Histone H3 (Lys9) Antibody Sampler Kit provides an economical means of detecting levels of mono-, di-, and tri-methyl histone H3 Lys9 using methyl-specific and control histone H3 antibodies. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

The Fanconi Anemia Antibody Sampler Kit provides an economical means of detecting members of the Fanconi Anemia signaling pathway. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Fanconi anemia (FA) is an autosomal recessive genetic disorder resulting in symptoms that include chromosomal breakage, bone marrow failure, hypersensitivity to DNA cross-linking agents (such as mitomycin C), and a predisposition to cancer (1). In response to DNA damage, the FA nuclear complex (FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCM) induces mono-ubiquitination of FANCD2 and FANCI (2).Monoubiquitination of FANCD2 induces localization of FANCD2 to sites of DNA damage, where it interacts with BRCA1 (4). FANCJ/BRIP1, FANCD1/BRCA2, and FANCN/PALB2 are also recruited to sites of DNA damage. FA signaling is important in maintenance of chromosome stability and control of mitosis (3).

The Methyl-Histone H3 (Lys79) Antibody Sampler Kit provides an economical means of detecting levels of mono-, di-, and tri-methyl histone H3 Lys79 using methyl-specific and control histone H3 antibodies. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).