Microsize antibodies for $99 | Learn More >>

Human Bile Acid Binding

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Aldo-keto reductase family 1 member C2 (AKR1C2) is a member of a large superfamily of aldo-keto reductases that metabolize an array of substrates in a NADPH-dependent manner. AKR1C2 is the 3-α-hydroxysteroid dehydrogenase (3α-HSD) responsible for metabolizing and inactivating the androgen hormone 5α-dihydrotestosterone (DHT) to 3α-androstanediol (1). Research studies demonstrate an increase in AKR1C2 expression in cases of advanced prostate cancer (2). Both AKR1C2 and the related reductase, AKR1C3, are implicated in enhancing PI3K/Akt signaling in prostate cancer by reducing prostaglandin D2 to the more stable 9α, 11β-PGF2α (2). In addition, research studies demonstrate an increase in AKR1C2 expression in some ovarian endometriosis specimens, suggesting the participation of AKR1C2 in the promotion of progesterone metabolism in ovarian endometriosis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Phospholipase A2 (PLA2) is a superfamily of enzymes that hydrolyze glycero-3-phosphocholines and release fatty acids and lysophospholipids (1). PLA2G1B is a member of this superfamily in the 1B group that is expressed most highly in the pancreatic acinar cells (2). Evidence suggests that PLA2G1B plays a role in the absorption and storage of extra energy as fats are metabolized (1,2). Lysophospholipids generated by PLA2G1B inhibit fatty acid oxidation in the liver and reduce energy expenditure, leading to diet-induced obesity and type 2 diabetes with a high fat diet (1). Therefore, a potential intervention of obesity and diabetes could target PLA2G1B in the digestive tract (2).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Fatty acid binding proteins (FABPs) bind to fatty acids and other lipids to function as cytoplasmic lipid chaperones (1,2). They participate in the transport of fatty acids and other lipids to various cellular pathways (2). Research studies have shown that common variants of the human liver fatty acid binding protein gene FABP1 play a role in the development of type 2 diabetes and insulin resistance (3).