Microsize antibodies for $99 | Learn More >>

Human Dna-Apurinic or Apyrimidinic Site Lyase Activity

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Ape1 (Apurinic/Apyrimidic eEndonuclease 1), also known as Ref1 (Redox effector factor 1), is a multifunctional protein with several biological activities. These include roles in DNA repair and in the cellular response to oxidative stress. Ape1 initiates the repair of abasic sites and is essential for the base excision repair (BER) pathway (1). Repair activities of Ape1 are stimulated by interaction with XRCC1 (2), another essential protein in BER. Ape1 functions as a redox factor that maintains transcription factors in an active, reduced state but can also function in a redox-independent manner as a transcriptional cofactor to control different cellular fates such as apoptosis, proliferation and differentiation (3). Increased expression of Ape1 is associated with many types of cancers including cervical, ovarian, prostate, rhabdomyosarcomas and germ cell tumors (4). Ape1 has been shown to stimulate DNA binding of several transcription factors known to be involved in tumor progression such as Fos, Jun, NF-κB, PAX, HIF-1, HLF and p53 (4). Mutation of the Ape1 gene has also been associated with amyotrophic lateral sclerosis (ALS) (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Ape1 (Apurinic/Apyrimidic eEndonuclease 1), also known as Ref1 (Redox effector factor 1), is a multifunctional protein with several biological activities. These include roles in DNA repair and in the cellular response to oxidative stress. Ape1 initiates the repair of abasic sites and is essential for the base excision repair (BER) pathway (1). Repair activities of Ape1 are stimulated by interaction with XRCC1 (2), another essential protein in BER. Ape1 functions as a redox factor that maintains transcription factors in an active, reduced state but can also function in a redox-independent manner as a transcriptional cofactor to control different cellular fates such as apoptosis, proliferation and differentiation (3). Increased expression of Ape1 is associated with many types of cancers including cervical, ovarian, prostate, rhabdomyosarcomas and germ cell tumors (4). Ape1 has been shown to stimulate DNA binding of several transcription factors known to be involved in tumor progression such as Fos, Jun, NF-κB, PAX, HIF-1, HLF and p53 (4). Mutation of the Ape1 gene has also been associated with amyotrophic lateral sclerosis (ALS) (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: HMGA2 belongs to the family of high mobility group with AT-hook DNA binding domain. HMGA proteins are considered architectural transcription factors; they do not have direct transcriptional activation capacity, but instead regulate gene expression by changing DNA conformation through binding to AT-rich regions in the DNA and/or direct interaction with other transcription factors (1,2). HMGA2 is abundantly and ubiquitously expressed and plays a crucial role during embryonic development (3). HMGA2 promotes stem cell self-renewal and research studies have shown that decreased HMGA2 expression is associated with stem cell aging (4-7). Investigators have shown that expression levels of HMGA2 are very low in normal adult tissues, while either overexpression or rearrangement is associated with many types of cancer (8-11).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: HMGA1, formerly known as HMG-I/Y, belongs to a family of high mobility group proteins that contain an AT-hook DNA binding domain. HMGA proteins are considered architectural transcription factors; they do not have direct transcriptional activation capacity, but instead regulate gene expression by changing DNA conformation through binding to AT-rich regions in the DNA and/or direct interaction with other transcription factors (1,2). HMGA1 is highly expressed during embryogenesis and in embryonic stem cells, but not in fully differentiated adult tissues (2-4). Research studies have shown that HMGA1 is over-expressed in rapidly dividing neoplastic cells and a wide variety of aggressive cancers, including thyroid, colon, breast, pancreas, and prostate (2-4). Investigators have shown that forced expression of HMGA1 induces cellular transformation and an epithelial-to-mesenchymal transition (EMT), while inhibition of HMGA1 expression blocks anchorage-independent cell growth and proliferation of cancer cells, suggesting that HMGA1 contributes to carcinogenesis by inducing and maintaining a de-differentiated, highly proliferative cell state (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: HMGA2 belongs to the family of high mobility group with AT-hook DNA binding domain. HMGA proteins are considered architectural transcription factors; they do not have direct transcriptional activation capacity, but instead regulate gene expression by changing DNA conformation through binding to AT-rich regions in the DNA and/or direct interaction with other transcription factors (1,2). HMGA2 is abundantly and ubiquitously expressed and plays a crucial role during embryonic development (3). HMGA2 promotes stem cell self-renewal and research studies have shown that decreased HMGA2 expression is associated with stem cell aging (4-7). Investigators have shown that expression levels of HMGA2 are very low in normal adult tissues, while either overexpression or rearrangement is associated with many types of cancer (8-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: HMGA1, formerly known as HMG-I/Y, belongs to a family of high mobility group proteins that contain an AT-hook DNA binding domain. HMGA proteins are considered architectural transcription factors; they do not have direct transcriptional activation capacity, but instead regulate gene expression by changing DNA conformation through binding to AT-rich regions in the DNA and/or direct interaction with other transcription factors (1,2). HMGA1 is highly expressed during embryogenesis and in embryonic stem cells, but not in fully differentiated adult tissues (2-4). Research studies have shown that HMGA1 is over-expressed in rapidly dividing neoplastic cells and a wide variety of aggressive cancers, including thyroid, colon, breast, pancreas, and prostate (2-4). Investigators have shown that forced expression of HMGA1 induces cellular transformation and an epithelial-to-mesenchymal transition (EMT), while inhibition of HMGA1 expression blocks anchorage-independent cell growth and proliferation of cancer cells, suggesting that HMGA1 contributes to carcinogenesis by inducing and maintaining a de-differentiated, highly proliferative cell state (5-8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Ribosomal protein S3 (rpS3) is a component of the 40S ribosomal subunit and is involved in translation. HSP90 interacts with both the amino-terminus and carboxy-terminus of rpS3, preventing its ubiquitination and degradation and thereby retaining the integrity of the ribosome (1). rpS3 has also been shown to function as an endonuclease during DNA damage repair (2,3). Furthermore, overexpression of rpS3 sensitizes lymphocytic cells to cytokine-induced apoptosis, indicating a third role for rpS3 during apoptosis (4). The functions of rpS3 during DNA damage repair and apoptosis have been mapped to two distinct domains (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Ribosomal protein S3 (rpS3) is a component of the 40S ribosomal subunit and is involved in translation. HSP90 interacts with both the amino-terminus and carboxy-terminus of rpS3, preventing its ubiquitination and degradation and thereby retaining the integrity of the ribosome (1). rpS3 has also been shown to function as an endonuclease during DNA damage repair (2,3). Furthermore, overexpression of rpS3 sensitizes lymphocytic cells to cytokine-induced apoptosis, indicating a third role for rpS3 during apoptosis (4). The functions of rpS3 during DNA damage repair and apoptosis have been mapped to two distinct domains (4).